开源基本参数
  • 品牌
  • 格物斯坦,极镁客
  • 培训机构
  • 格物斯坦
  • 培训方式
  • 线下,线上
开源企业商机

格物斯坦的开源系列课程是其教育生态中面向10岁以上青少年的高阶实践平台,深度融合工业级硬件与开源软件生态,通过“机械结构+电子电路+算法编程”的三维整合,构建了从基础认知到创新研发的完整路径。该系列课程以金属结构件(0.01毫米公差精度)与开源控制器(如GC-500/GC-600)为载体,结合分层级编程工具链,精细适配不同年龄段学生的认知发展与创新能力需求。格物斯坦通过这套课程体系,将工业级精度(六面铝合金结构件)与教育普惠性(图形化至代码编程的无缝跃迁)深度融合,让青少年在解决农业、环保、医疗等现实问题的过程中,锤炼从机械动力学到AI算法的系统性工程思维,真正践行“创造无围墙”的创客教育本质。全金属模块化设计,兼容Scratch、Arduino及ROS生态,扩展性强大。兼容各种开源创客学习

兼容各种开源创客学习,开源

开源系列产品的跨学科整合:结合3D打印课程,定制非标结构件(如轻量化仿生腿),优化机器人动态性能;“脑电波控制积木车”实验将专注力转化为前进指令,应用于特殊教育场景。高等教育与科研仿生机器人开发:高校团队基于“格物”仿真平台预演双足机器人Tinker的运动策略,再部署至实体硬件验证抗风压能力(模拟八级强风);通过调整关节参数(如腿长、偏转角度),探索四足机器人Go2的极限负重(50公斤)与跳跃稳定性。人工智能融合:基于ROS开发“多机协作流水线”,实现机器人群体任务分配与避障算法;集成YOLO目标检测模型,赋予机械臂动态抓取能力(如分拣快递包裹)。格物斯坦开源技术开放工厂参观,学生实地体验智能制造流程。

兼容各种开源创客学习,开源

格物斯坦开源系列的机械手臂的软件生态覆盖从图形化编程到工业级开发的完整路径:低门槛开发:通过GScratch软件(基于Scratch 2.0优化)拖拽“舵机角度”“视觉识别”等积木块,学生可快速实现基础动作控制;软件支持一键将图形代码转译为Arduino C语言,降低高阶开发的学习曲线。高阶智能融合:结合ROS框架,机械手臂可运行多模态AI任务。例如集成YOLO目标检测模型实现动态分拣(如物流包裹分类),或通过强化学习算法优化抓取路径,在工业分拣场景中达到毫米级操作精度。仿真与现实协同:依托“格物”具身智能仿真平台,学生可先在虚拟环境中预演机械臂运动策略(如抗扰控制、负载优化),再部署至实体硬件验证。例如在模拟八级强风环境中测试动态平衡,或验证50公斤负重下的结构稳定性,大幅压缩研发周期。

开源系列鲜明的特质在于其全栈开放的设计哲学。硬件上,产品采用铝合金机身,支持快速拆装,机械结构、电子模块、软件接口均遵循模块化设计原则。这种设计不仅赋予产品工业级的耐用性,更让学习者能像工程师一样自由组合传感器、控制器与执行器,例如通过兼容Arduino扩展板接入温湿度传感器或舵机,或将Scratch图形化程序无缝转化为Arduino代码进行底层优化。软件层面,Gscratch编程平台在继承Scratch 2.0易用性的同时,深度整合了硬件交互模块——学生拖拽“超声波避障”积木块时,实际是在操控GC-500控制器驱动真实传感器,而平台提供的“代码可视化”功能可一键将图形程序转为C语言,实现从可视化编程到工业级开发的平滑过渡。这种“图形化入门、代码级深入”的双轨设计,既降低了学习门槛,又为高阶探索保留了空间。图形化编程卡开源指令集,将抽象代码转化为可触摸步骤。

兼容各种开源创客学习,开源

格物斯坦的金属开源机器人系列(如铁达摩、GBOT系列)采用**度铝合金结构件,兼容Scratch、Arduino及ROS(RobotOperatingSystem)生态,硬件精度达0.01毫米,软件层面支持图形化编程至C++的无缝过渡。这一开放性设计吸引全球开发者加入OpenLoong开源社区,通过每周线下分享会与在线协作,共同优化机器人算法与硬件设计。产业转化方面,平台***降低研发成本:传统需500万元投入、数十人团队的机器人原型开发,如今单人5天内即可完成,成本骤降90%。典型案例包括:双足机器人Tinker:实现抗扰行走与动态平衡,模拟八级强风环境仍保持稳定;四足机器人Go2:完成50公斤负重跳跃测试,运动性能经仿真预演后精细迁移至实体;智能分拣系统:高校团队结合OpenCV视觉识别与机械臂控制积木模块,实现物流场景高效分拣。 图形化编程卡将抽象代码转化为可触摸指令,具象化学习逻辑链。兼容各种开源创客学习

“悬崖勒马”项目调试红外传感器,编写舵机急停逻辑应对边缘风险。兼容各种开源创客学习

格物斯坦开源系列的传感器通过场景化教学激发创造力:在山区学校“智能浇花系统”中,土壤湿度传感器触发水泵指令,学生需调试阈值平衡节水与植物需求;林火监测无人机项目结合红外传感器与GPS模块,火源定位误差小于2米,获IRM大赛创新奖;脑机协作实验让自闭症儿童通过专注力控制机器人行进速度,行为干预有效率提升40%。格物斯坦以开源传感器生态重构了机器人教育范式——既以工业级精度(如荷重传感器±0.04%非线性)支撑科研级项目开发,又通过积木式编程降低认知负荷,让小学生也能在48小时内完成“声控家居机器人”原型搭建,真正实现创造力的民主化。兼容各种开源创客学习

与开源相关的**
与开源相关的标签
信息来源于互联网 本站不为信息真实性负责