开源基本参数
  • 品牌
  • 格物斯坦,极镁客
  • 培训机构
  • 格物斯坦
  • 培训方式
  • 线下,线上
开源企业商机

格物斯坦的开源系列金属十合一课程是其教育体系中面向10-15岁青少年的高阶实践平台,深度融合工业级硬件与开源软件生态,以“机械结构+电子电路+算法编程”的三维整合为重点,构建从基础工程认知到复杂系统创新的完整学习路径。该课程分为初、中、高三级(共36课时),以高精度金属结构件(公差0.01mm) 和Arduino开源硬件为载体,通过项目制学习引导工业级硬件操作与机械结构设计、电子电路与传感器融合、代码编程与系统逻辑构建、跨学科项目实践与工程思维培养。仿真平台预演机械臂抗强风策略,再部署实体硬件验证,压缩研发周期。适合中龄段学习的开源机器人

这些控制器与格物斯坦的 “产学研赛一体化”战略深度融合——GC-500已应用于IRM国际机器人创客大赛,支撑青少年开发出火源定位误差小于2米的“灾区生命探测机器人”;高校团队则依托GC-600的ROS兼容性,在“格物”仿真平台中预演双足机器人抗八级强风的运动策略,再将算法部署至实体硬件验证,大幅压缩研发周期。从幼儿指尖的点读笔到青少年手中的ROS开发板,格物斯坦以一套梯度化、开源化、工业化的控制器体系,让每个年龄段的创造者都能找到技术支点,在真实问题解决中锤炼从逻辑思维到系统工程的素养。刷卡编程开源创客教育技术普惠:开源硬件降低高阶机器人开发门槛。

格物斯坦GBOT系列初级甲虫机器人采用基础履带式移动平台,结构紧凑易组装。通过ATmega328P主板控制电机驱动,学习基础运动逻辑。该机器人支持Scratch图形化编程快速入门,或Arduino代码深入开发,适合机器人结构认知与动作控制教学。而中级的投石车的设计模拟了古代利用杠杆原理抛射石弹的大型人力远射兵器。采用电机配合减速齿轮组驱动投臂,精确控制抛射力度与角度。使用TT马达电机实现稳定动力输出,根据编程内容的编写调节投射轨迹。

格物斯坦的物理量传感器以动态感知为重点,包括:力学感知模块:如荷重传感器、应变加速度传感器,可测量0.1-50kg范围内的压力变化,精度达满量程±0.05%,用于机械臂抓取力控制或摩天轮承重实验;空间定位单元:超声测距传感器、巡线传感器,构成机器人避障与路径规划的基础;运动状态器件:陀螺仪与加速度计融合模块,支撑仿生机器人的动态平衡控制。环境量传感器则聚焦跨学科场景融合:光敏传感器基于光导效应,支持环境光强分级(如0-1000lux分档),应用于智能灯控系统与植物生长监测;温湿度复合传感器采用陶瓷湿敏电容与扩散硅技术,温度范围-30℃~70℃,湿度检测精度±3%,用于农业温室自动调控项目;气敏组件如MQN型气敏电阻,可检测CO₂、甲烷等气体浓度,结合TiO₂氧浓度传感器,成为环保监测机器人的重点。生物信号传感器体现技术普惠:脑电波模块通过专注力阈值触发指令,将α波强度转化为机器人速度参数,应用于特殊儿童康复训练;表情面板集成LED阵列与触摸感应,支持情绪化人机交互。“颜色分类系统”融合OpenCV与机械臂控制,实现毫米级分拣精度。

格物斯坦机械手臂采用**度铝合金结构件,通过超精密加工技术实现0.01毫米公差精度,确保机械臂在高速运动中的稳定性和耐久性。其关节模块搭载高扭矩舵机(扭矩范围0.15-20kg·cm),支持多自由度运动(如六轴协同),并预留标准化接口(I²C、UART、GPIO),兼容超声测距、红外巡线、温湿度传感器等300余种电子模块,以及第三方执行器如气动机械爪。**控制器GC-500/GC-600系列集成蓝牙4.0模块,支持手机App遥控(如“你画我跑”轨迹生成、语音指令交互),同时深度兼容ROS(Robot Operating System)开发套件。这一设计使学生可直接调用ROS中的运动控制API、传感器驱动库及OpenCV视觉算法,用Python/C++编写自主导航程序,实现从仿真到实体硬件的无缝迁移。仿真平台预演开源机械臂抗强风策略,压缩实体验证周期。推动开源程序

万向轮底盘设计优化多地形适应力,适用于野外勘探项目。适合中龄段学习的开源机器人

格物斯坦的开源系列产品构建了一套覆盖3至16岁全年龄段的梯度化教育生态,其设计精细契合不同年龄段学习者的认知发展规律与创造力激发需求,通过“硬件精度+软件适配+场景进阶”的三维支撑,让每个成长阶段的孩子都能找到技术探索的支点。高阶创造阶段(13-16岁):工业级开发与跨学科创新开源系列的设计体现于GC-500/GC-600控制器与金属结构件(0.01mm公差精度),其深度兼容ROS开发套件与Arduino生态,支持Python/C++编写工业级算法。学生可开发复杂项目如:仿生机械臂:调用OpenCV视觉库实现动态分拣,通过YOLO模型识别物体颜色与形状,抓取精度达毫米级;自主平衡车:融合陀螺仪与强化学习算法,模拟八级强风环境优化抗扰策略;林火监测系统:整合红外传感器与无人机,实现火源定位误差小于2米。适合中龄段学习的开源机器人

与开源相关的**
与开源相关的标签
信息来源于互联网 本站不为信息真实性负责