能源数字化,碳中和的助推引擎
目前,我国年碳排放量在100亿吨左右,按照“3060”战略部署,到2030年实现碳达峰时,我国碳排放量将控制在116亿吨左右,此后碳排放量逐年下降,到2060年左右与碳吸收量相等,从而实现碳中和。当前我国碳吸收量为12亿~14亿吨,净排放接近90亿吨。由于自然界中碳吸收主要靠植物光合作用,也就是生态碳汇,其总量受国土资源禀赋制约较大,增长潜力很小。若工业级碳吸收(工业碳汇)技术不实现大突破,尤其是技术经济性不实现大突破,则只能依靠减少碳排放量来实现碳中和。由于碳排放量与工业生产规模、效率强相关,需要在减少碳排放的同时,减轻对经济增长的影响,可以说实现碳中和的任务极为艰巨。 “双碳”目标对能源需求侧管理发展路径提出了更加多元化的要求。数据采集资源系统
能源计量*是一个基础,挖掘数据背后价值,**终才能达成服务的目的。
我们可以看到电水气热各能源企业和表计企业,都在往综合能源服务提供商发展。引用之前小编写的“那么多做智慧能源和能效管理的,为啥选排名居中的几十家表企中的这四家”文章里,有留言评论说“一个生产型企业跨行去做能效系统本身就是一个不容易的事,就好比一个造药的工厂同时给客户看病一样道理。术业有专攻,做好自己比什么都好。能效系统不是想象的那么简单,难度不在技术本身,难在对行业的认知度。” 综合数据采集能源需求侧管理的简要沿革.
当下,能源企业对这些数据治理的实践主要集中在结构化数据方面,通常分为以下三种流派
首先,分析域数据治理,也称“元数据治理”。其以元数据,目标是理顺数据分析建模过程,提高数据质量,为构建分析型数据应用提供保障。而元数据主要解决所谓的 “数据四问”,即我是谁?我在哪里?我从哪里来?我往何处去?
第二,事务域数据治理,也称“主数据治理”。其以主数据,目标是确保业务应用及其集成与交互的顺畅,提高数据质量,降低业务风险。
第三,数据质量驱动的数据治理,即对业务应用、分析应用在数据采集、传输、存储、建模、利用过程中涉及的数据,针对其技术一致性、完整性等质量特性,以及业务上的准确性、标准化、等质量特性,进行梳理、清洗、检验、维护等治理工作。
空间维度我国能源资源供应与需求呈逆向分布,已形成跨省、跨区大范围能源资源调配格局。在供需紧张时期,会推高供能成本、加大能源运输通道压力,而需求侧可在一定空间范围内通过资源协同调节,助力缓解上述问题。在京津冀、长三角、粤港澳、川渝等城市群一体化发展加速的背景下,推动电动汽车、储能电站、虚拟电厂等各类需求侧资源参与跨省调配,在空间范围内提供调峰资源或推动跨省可再生能源消纳,提高区域能源运行效率。横向维度零碳、节能、供热冷....面向综合能源服务的能源计量。
另一方面,通过削峰、移峰、填谷等方式,有效挖掘需求侧资源潜力,提升系统的灵活性和韧性,在保障系统安全的同时
助力风、光等新能源消纳,助力能源系统绿色低碳转型。
能源需求侧管理的理论内涵与逻辑机理结合“双碳”目标要求,本文尝试对能源需求侧管理的理论框架进行探讨。通过梳理
分析能源需求侧管理的概念内涵,从多个维度系统分析其促进清洁低碳、安全高效的现代能源体系建设的逻辑机理,有利
于明确其在能源系统中的定位,更好地发挥其作用。 国产工业自动化基础数据采集设备是该重回原点.能源统计数据公司
切实可行的认证之路 —— 数字化认证。数据采集资源系统
横向维度随着能源新技术、新产业、新业态、新模式的不断涌现,能源需求侧加快变革发展,能源消费模式从局限于产业链终端、消费方式单一逐步向产消一体化转型。通过推动电、热、冷、气等多能源品种耦合、协同互济,实现能源梯级利用,有利于打破能源品种间的供应壁垒,提升能源开发利用效率效能,提高整个系统的可靠性和稳定性。面向需求侧的综合能源管理和服务,将成为现代能源体系建设的重要方向。
纵向维度现代能源体系建设将逐步推动集中式能源供应向分布式、去中心化转型。一方面,随着可再生能源渗透率不断提高,风电、光伏间歇性、随机性、波动性的特征导致能源供给侧波动性加剧,需要深入挖掘需求侧灵活可调节资源,并引导其参与系统运行调度,从需求侧增强系统安全风险抵御能力。另一方面,促进分布式可再生电力、热力、燃气等资源就近利用,提高能源自给率,可减轻远距离能源输送压力,推动能源产、供、储、运、销各环节协调配合,规避能源流向单一的风险。 数据采集资源系统