基于光刻工艺的微纳加工技术主要包含以下过程:掩模(mask)制备、图形形成及转移(涂胶、曝光、显影)、薄膜沉积、刻蚀、外延生长、氧化和掺杂等。在基片表面涂覆一层某种光敏介质的薄膜(抗蚀胶),曝光系统把掩模板的图形投射在(抗蚀胶)薄膜上,光(光子)的曝光过程是通过光化学作用使抗蚀胶发生光化学作用,形成微细图形的潜像,再通过显影过程使剩余的抗蚀胶层转变成具有微细图形的窗口,后续基于抗蚀胶图案进行镀膜、刻蚀等可进一步制作所需微纳结构或器件。边缘效应管理是光刻工艺中的一大挑战。上海真空镀膜加工

基于掩模板图形传递的光刻工艺可制作宏观尺寸的微细结构,受光学衍射的极限,适用于微米以上尺度的微细结构制作,部分优化的光刻工艺可能具有亚微米的加工能力。例如,接触式光刻的分辨率可能到达0.5μm,采用深紫外曝光光源可能实现0.1μm。但利用这种光刻技术实现宏观面积的纳米/亚微米图形结构的制作是可欲而不可求的。近年来,国内外比较多学者相继提出了超衍射极限光刻技术、周期减小光刻技术等,力求通过曝光光刻技术实现大面积的亚微米结构制作,但这类新型的光刻技术尚处于实验室研究阶段。重庆功率器件光刻湿法刻蚀包括三个基本过程:刻蚀、冲洗和甩干。

双面镀膜光刻是针对硅及其它半导体基片发展起来的加工技术。在基片两面制作光刻图样并且实现映射对准曝光,如果图样不是轴向对称的,往往需要事先设计图样成镜像关系的两块掩模板,每块掩模板用于基片一个表面的曝光,加工设备的高精度掩模—基片对准技术是关键。对于玻璃基片,设计对准标记并充分利用其透明属性,可以方便对准操作,提高对准精度。光学玻璃基片,表面光洁度不如晶圆,需要事先经过光学抛光的工艺处理。玻璃基片的透光性是个可利用的属性,物镜可以直接透过基片看到掩模板的对准标记。数字显微镜可以不断变焦观察掩模板和基片的对准情形,不再以关联物镜参照系的数字存储图像为基准,则调焦引起的物镜抖动对于对准精度不再发生作用。这就是玻璃基片的透明属性带来的好处。
二氧化硅的湿法刻蚀通常使用HF。因为1∶1的HF(H2O中49%的HF)在室温下刻蚀氧化物速度过快,所以很难用1∶1的HF控制氧化物的刻蚀。一般用水或缓冲溶剂如氟化铵(NH4F)进一步稀释HF降低氧化物的刻蚀速率,以便控制刻蚀速率和均匀性。氧化物湿法刻蚀中所使用的溶液通常是6∶1稀释的HF缓冲溶液,或10∶1和100∶1的比例稀释后的HF水溶液。的半导体制造中,每天仍进行6∶1的缓冲二氧化硅刻蚀(BOE)和100∶1的HF刻蚀。如果监测CVD氧化层的质量,可以通过比较CVD二氧化硅的湿法刻蚀速率和热氧化法生成的二氧化硅湿法刻蚀速率,这就是所谓的湿法刻蚀速率比。热氧化之前,HF可用于预先剥除硅晶圆表面上的原生氧化层。在硅材料刻蚀当中,硅针的刻蚀需要用到各向同性刻蚀,硅柱的刻蚀需要用到各项异性刻蚀。

曝光显影后存留在光刻胶上的图形(被称为当前层(currentlayer)必须与晶圆衬底上已有的图形(被称为参考层(referencelayer))对准。这样才能保证器件各部分之间连接正确。对准误差太大是导致器件短路和断路的主要原因之一,它极大地影响器件的良率。在集成电路制造的流程中,有专门的设备通过测量晶圆上当前图形(光刻胶图形)与参考图形(衬底内图形)之间的相对位置来确定套刻的误差(overlay)。套刻误差定量地描述了当前的图形相对于参考图形沿X和Y方向的偏差,以及这种偏差在晶圆表面的分布。与图形线宽(CD)一样,套刻误差也是监测光刻工艺好坏的一个关键指标。理想的情况是当前层与参考层的图形正对准,即套刻误差是零。为了保证设计在上下两层的电路能可靠连接,当前层中的某一点与参考层中的对应点之间的对准偏差必须小于图形间距的1/3。湿法刻蚀较普遍、也是成本较低的刻蚀方法,大部份的湿刻蚀液均是各向同性的。佛山MEMS光刻
光刻机被称作“现代光学工业之花”。上海真空镀膜加工
第三代为扫描投影式光刻机。中间掩模版上的版图通过光学透镜成像在基片表面,有效地提高了成像质量,投影光学透镜可以是1∶1,但大多数采用精密缩小分步重复曝光的方式(如1∶10,1∶5,1∶4)。IC版图面积受限于光源面积和光学透镜成像面积。光学曝光分辨率增强等光刻技术的突破,把光刻技术推进到深亚微米及百纳米级。第四代为步进式扫描投影光刻机。以扫描的方式实现曝光,采用193nm的KrF准分子激光光源,分步重复曝光,将芯片的工艺节点提升一个台阶。实现了跨越式发展,将工艺推进至180~130nm。随着浸入式等光刻技术的发展,光刻推进至几十纳米级。第五代为EUV光刻机。采用波长为13.5nm的激光等离子体光源作为光刻曝光光源。即使其波长是193nm的1/14,几乎逼近物理学、材料学以及精密制造的极限。上海真空镀膜加工