振动基本参数
  • 品牌
  • 国洲电力
  • 型号
  • GZAF-1000T系列,GZAF-1000S系列,
振动企业商机

AFV 信号分析法基于对 OLTC 振动特性的研究来判断其状态。OLTC 内部触头在频繁的分 / 合切换过程中,由于机械应力、化学腐蚀以及触头材料的消耗,不可避免地会出现凹凸不平和变形的情况。这种变化直接导致触头压力、接触电阻和开矩参数发生改变,进而使得 OLTC 的振动特征产生明显变化。比如,触头磨损严重时,振动信号的高频成分会增加,信号的稳定性变差。通过 AFV 传感器持续监测这些振动特征的改变,我们就可以准确判断 OLTC 是否处于故障状态,及时采取相应措施,保障电力系统的稳定运行。杭州国洲电力科技有限公司振动声学指纹在线监测技术的经济效益分析。电抗器振动监测等级

电抗器振动监测等级,振动

AFV 信号分析法的关键在于准确监测 OLTC 的 AFV 信号,从而获取其状态数据和工作模式。OLTC 切换时产生的脉冲冲击力,如同设备运行状态的 “信使”,通过变压器油和静触头传递到变压器箱壁,形成具有特定特征的振动信号。我们利用 AFV 传感器对这些信号进行采集和分析,能够获取 OLTC 的切换时间、触头状态等重要信息。当 OLTC 出现触头磨损故障时,其振动信号的频谱会发生明显变化,某些特定频率的幅值会增大。通过对这些信号特征的识别和分析,我们可以迅速判断出 OLTC 的故障类型,为设备的维护和检修提供明确方向。电力振动监测调试安装GZAFV-01型声纹振动监测系统(变压器、电抗器)的数据可视化和远程监控。

电抗器振动监测等级,振动

在 OLTC 的运行过程中,AFV 信号分析法发挥着至关重要的作用。OLTC 切换瞬间,内部复杂的机械动作所产生的脉冲冲击力,会引发一系列振动传递现象。从内部机构到变压器油,再到变压器箱壁,每一个环节都承载着信号的传递与转换。通过对 AFV 信号的深入监测,我们能够洞察 OLTC 切换时间的微妙变化。若切换时间超出正常范围,可能意味着内部机械结构出现磨损或卡顿,这将严重影响 OLTC 的正常工作,而 AFV 信号分析法能够及时发现此类隐患,为设备维护提供有力支持。

信号包络分析

为提高在线监测的准确度,GZAFV-01系统的IED/主机通常采用高采样率获取声纹振动及驱动电机电流的信号,然而大量的数据不利于快速、准确存储与分析。因而采用包络分析,简化并反映原始信号特征,便于后续分析与处理。传统希尔伯特变换进行包络分析时存在提取深度不足、存在幅值偏差等问题,因此采用小波变换和希尔伯特变换结合的信号包络分析。声纹振动和电流的信号包络分析

信号包络重合度比对分析

信号包络分析后可快速实现历史信号重合度比对分析,更直观地判断OLTC运行状态。为量化信号重合度比对,GZAFV-01系统引入互相关系数的计算。当实时采集的与正常状态的信号包络互相关系数:◆接近1时,OLTC接近正常运行状态。◆接近0时,OLTC可能存在故障。 杭州国洲电力科技有限公司振动声学指纹在线监测服务的定制化解决方案。

电抗器振动监测等级,振动

OLTC的振动信号主要通过两种路径传播:一是通过静触头的机械连接直接传递至变压器外壳;二是通过变压器油的声波传导。这两种路径的信号特征有所不同,静触头传递的信号通常包含高频成分(如触头撞击),而油中传播的信号则以中低频为主(如机械共振)。AFV信号分析法需结合多传感器布置,以捕捉不同频段的振动信息,从而提高故障诊断的准确性。例如,触头接触不良会导致高频振动能量增加,而弹簧弹性下降则可能引起低频振动幅值的变化。杭州国洲电力科技有限公司振动声学指纹在线监测技术的实际应用价值。特高压GIS振动监测机构

GZAFV-01型声纹振动监测系统的概述。电抗器振动监测等级

弹簧弹性下降的AFV信号特征识别。弹簧弹性下降的AFV信号特征识别弹簧机构是OLTC切换动力的关键部件,其弹性下降会导致切换时间延长或动作不到位。AFV信号分析法通过分析振动信号的时频特性,可以识别弹簧老化问题。例如,正常状态下,OLTC切换时的振动信号具有清晰的周期性冲击特征;而弹簧弹性不足时,冲击信号的间隔时间会延长,且幅值降低。此外,弹簧故障还可能引发二次振动(如机构回弹),这些特征均可通过AFV信号的小波变换或包络分析进行提取。电抗器振动监测等级

与振动相关的**
信息来源于互联网 本站不为信息真实性负责