运用 AFV 信号分析法判断 OLTC 的状态,需要关注 OLTC 振动信号的多维度特征。OLTC 切换时产生的振动信号,其频率、幅值、相位等特征都与设备的运行状态密切相关。例如,当 OLTC 出现触头磨损故障时,振动信号的频率分布会发生变化,高频成分会增多;幅值也会随着磨损程度的加深而增大。同时,信号的相位可能会发生偏移,这反映了内部机械结构的相对位置变化。通过对这些多维度特征的综合分析,我们可以更加准确地判断 OLTC 的故障类型和状态,为设备的维修和保养提供更***的信息,确保电力系统的可靠运行。杭州国洲电力科技有限公司相关振动监测的报告。国洲电力振动监测结果

OLTC的振动信号主要通过两种路径传播:一是通过静触头的机械连接直接传递至变压器外壳;二是通过变压器油的声波传导。这两种路径的信号特征有所不同,静触头传递的信号通常包含高频成分(如触头撞击),而油中传播的信号则以中低频为主(如机械共振)。AFV信号分析法需结合多传感器布置,以捕捉不同频段的振动信息,从而提高故障诊断的准确性。例如,触头接触不良会导致高频振动能量增加,而弹簧弹性下降则可能引起低频振动幅值的变化。浙江进口振动监测合同GZAFV-06T型便携式变压器声纹振动 监测与诊断系统。

在运用 AFV 信号分析法判断 OLTC 状态时,要充分考虑 OLTC 运行环境对信号的影响。OLTC 通常在复杂的电磁环境和温度变化条件下运行,这些环境因素可能会对其振动信号产生干扰。例如,高温环境可能会导致变压器油的粘度发生变化,从而影响脉冲冲击力的传递特性,使振动信号的幅值和频率发生改变。此外,电磁干扰也可能会在振动信号中引入噪声,影响信号的准确性。因此,在采用 AFV 信号分析法时,需要采取相应的抗干扰措施,如滤波处理、屏蔽技术等,确保采集到的振动信号能够真实反映 OLTC 的运行状态,提高故障诊断的准确性。
AFV 信号分析法基于对 OLTC 振动特性的研究来判断其状态。OLTC 内部触头在频繁的分 / 合切换过程中,由于机械应力、化学腐蚀以及触头材料的消耗,不可避免地会出现凹凸不平和变形的情况。这种变化直接导致触头压力、接触电阻和开矩参数发生改变,进而使得 OLTC 的振动特征产生明显变化。比如,触头磨损严重时,振动信号的高频成分会增加,信号的稳定性变差。通过 AFV 传感器持续监测这些振动特征的改变,我们就可以准确判断 OLTC 是否处于故障状态,及时采取相应措施,保障电力系统的稳定运行。杭州国洲电力科技有限公司振动声学指纹在线监测技术的国际合作案例。

AFV 信号分析法的关键在于通过对 OLTC 振动信号的监测和分析,获取其状态数据和工作模式。OLTC 切换时,内部主要机构部件的运动撞击和摩擦产生的脉冲冲击力,通过变压器油传递到变压器箱壁,在箱壁上形成振动响应。这些振动响应包含了 OLTC 内部多种激励现象的信息,如触头的分 / 合状态、弹簧的弹性等。AFV 传感器采集这些振动信号,并运用专业的分析方法提取其中的特征参数。当 OLTC 出现触头磨损故障时,特征参数中的某些指标,如振动信号的峰峰值、有效值等会发生明显变化。通过对这些变化的判断,我们可以准确诊断出 OLTC 的故障状态,为设备的运行维护提供科学依据。杭州国洲电力科技有限公司振动声学指纹在线监测技术系统的可扩展性。GZAF-1000S系列高压开关振动原理
杭州国洲电力科技有限公司振动声学指纹在线监测技术的实际应用价值。国洲电力振动监测结果
电流信号分析法驱动电机电流信号的出现与消失可作为驱动电机运行与停止的标志,因此可选择电流信号持续时间作为OLTC动作的持续时间,此数据也是机械状态诊断的重要特征量,开关动作若出现持续时间过短或过长的现象,则表明切换过程中可能出现某种异常。弹簧储能过程是OLTC切换过程中诸多重要事件之一,当储能弹簧储能过程中存在机械卡涩或弹簧性能改变等现象,必然伴随着电机驱动力矩的变化,使驱动电机的转速发生变化,从而使驱动电机电流发生变化。因此,通过监测驱动电动机电流信号就可以了解OLTC驱动机构的工作情况,以及部件的磨损、卡涩、润滑、同步性等情况,用以判断OLTC储能弹簧性能改变或储能过程中是否存在卡涩等故障。国洲电力振动监测结果