4.1.9智能分析功能:软件内置典型故障特征的数据库,可与监测数据进行比对,通过信号波形、时间长度和幅值等特征值,诊断分析故障类型;也可添加新监测数据,方便后期横向、纵向比较;可将同一厂家同一型号的正常监测数据导入保存,便于对该厂家、型号的变压器监测数据曲线进行比对分析。4.1.10具有报表分析功能,自动计算并保存重合度、动作时间、能量分布、电流最大值、电流平均值、绕组及铁芯振动峰值频率、总谐波畸变率、基频能量比、互相关系数等特征参量,并生成分析报表。4.2智慧化功能4.2.1具备边缘计算能力,就地采集并处理声纹振动信号及驱动电机电流信号,完成OLTC信号包络、ATF图谱等分析,完成绕组及铁芯振动信号频谱分析及参数计算,根据传输层要求统一通讯接口及数据结构,根据平台层及应用层要求上传分析结果。杭州国洲电力科技有限公司电话支持。电力振动监测怎么选择
(2)重合度对比如下图10所示,包络分析后可快速实现历史信号重合度对比分析,更直观的判断OLTC运行状态。为量化信号重合度对比,系统引入相关系数的计算。当实时采集信号包络曲线与正常状态包络曲线相关系数接近1时,实时采集的信号接近正常运行状态;当相关系数接近0时,OLTC可能存在故障。图10信号重合度分析(3)能量分布曲线基于小波变换的声纹振动信号多分辨率分析的结果如下图11所示。原始信号经8层分解后产生第8层的近似分量和第1层至第8层的详细分量,计算各层详细分量信号能量,可获得信号能量分布曲线。对比正常状态与异常状态能量分布曲线,可判断OLTC运行状态,并提取互相关系数、最大值、平均值、峰度、偏度作为状态诊断特征参量。图12为正常状态与异常状态声纹振动信号能量分布曲线对比。振动监测需要什么条件GZAFV-06T型便携式变压器声纹振动 监测与诊断系统传感器。
变压器运行时,电流通过绕组时产生的电动力引起绕组振动,硅钢片的磁致伸缩及硅钢片接缝处与叠片之间的漏磁导致铁芯振动。由于绕组导体所受电动力正比于负载电流的平方,绕组的声纹振动信号的基频为100Hz。由于变压器中磁感应强度正比于加载电压的平方,铁芯的声纹振动信号的基频也为100Hz。另外,考虑到铁芯振动的非线性特性,声纹振动信号还会包含频率为100Hz整数倍的高次谐波。当变压器的绕组变形或铁芯故障后,声纹振动信号频谱分布将发生改变,产生谐波分量。因此,信号分量可以作为区别绕组故障与铁芯故障的重要依据,采用声纹振动监测法可实现绕组及铁芯在线运行状态下的健康态势评价与故障类型诊断。
4.1.8信号阈值告警功能:软件自动分析信号增长趋势,实现自动告警,也可手动设置告警阈值,支持短信告警;4.1.9智能诊断分析功能:系统软件内置海量故障特征的数据库,可与测得的数据进行比对,通过信号波形、时间长度和幅值等特征值,能量的异常变化分析,并可进行振动源位置分析,以及变压器内部绕组变形等故障类型的诊断分析;也可添加新测得的数据,方便后期横向、纵向比较;软件可将同一厂家同一型号的正常监测与诊断数据进行导入保存,便于对该厂家、型号的变压器数据曲线进行比对分析;4.1.10具有报表分析功能:自动计算并保存重合度、动作时间、能量分布、电流最大值、电流平均值、绕组及铁芯振动峰值频率、总谐波畸变率、基频能量比、互相关系数等特征参量,并生成分析报表。GZOLM-1000G 系列特高压GIS 多参量监测与融合评价系统服务总则。
3.2.1.1OLTC监测与诊断:=1\*GB3①采用多路振动传感器获取振动信号,传感器通过固定底座安装在变压器外壁,安装位置通常选取平行于分接开关垂直传动杆方向,且尽量靠近分接开关触头组处。=2\*GB3②采用非接触方式安装在OLTC的1~2m范围内的声纹传感器获取OLTC切换时的声纹信号。=3\*GB3③采用安装于驱动电机电源线处的电流传感器获取OLTC驱动电机电流信号。3.2.1.2变压器本体(绕组及铁芯)监测与诊断:=1\*GB3①采用多路振动传感器监测与诊断变压器绕组及铁芯运行状况,通常安装于上夹件底部、非冷却器侧油箱表面中部及油箱顶部中芯点。为保持监测与诊断点同一性,便于历史数据对比,传感器底座应长期固定在变压器外壁上。=2\*GB3②采用声纹传感器获取变压器声纹信号,传感器采用工装固定在变压器周边立柱或防火墙上,距地面高度1.2m以上、1/2油箱高度以下,与变压器距离0.3m~2m之间。GZAF-1000T系列变压器/电抗器振动声学指纹监测系统基本功能。无线振动监测工作
GZAFV-06T型便携式变压器声纹振动 监测与诊断系统功能特点。电力振动监测怎么选择
OLTC动作时,典型声纹振动和驱动电机电流的信号如下图3.4所示。通过分解时域内典型信号区间,可有效判断OLTC驱动电机启动、分接选择器断开、分接选择器闭合、切换开关动作、驱动电机制动等动作顺序,进而分析OLTC的运行状态。然而,以上通过典型信号分析判断OLTC的运行状态需要丰富的实践经验,为方便监测人员快速完成诊断任务,需通过多种算法更直观、准确地判断OLTC状态。GZAFV-01系统结合基于小波变换及希尔伯特变换的包络分析、基于互相关系数的重合度分析、基于小波多分辨率分解的能量分布曲线分析、基于时频分布矩阵的信号比对等多种核心算法,实现OLTC***、有效、准确的状态诊断和早期隐患监测,降低OLTC运行的故障风险。电力振动监测怎么选择