中药厂提取工序,监测站测 pH 值,保证药效成分:中药厂提取工序是提取中药材中有效药效成分的关键环节,pH 值对提取效果有着至关重要的影响。不同的药效成分(如生物碱、黄酮类、苷类)在不同 pH 值环境下的溶解度和稳定性差异较大。例如,生物碱类成分在酸性条件下溶解度较高,更易被提取;而黄酮类成分在碱性条件下提取效果更佳。若提取工序中 pH 值控制不当,会导致药效成分提取率降低,造成中药材资源浪费;还可能使部分药效成分分解、变质,影响中药产品的疗效和质量,甚至产生有害物质,危害人体健康。此外,pH 值异常还可能腐蚀提取设备,缩短设备使用寿命,增加生产成本。因此,在中药厂提取工序中,实时监测 pH 值并调控,是保证药效成分的措施。监测站配备高精度 pH 电极,能实时采集提取液样本,快速测定 pH 值。工作人员根据不同中药材的提取工艺要求,预设 pH 值范围,在提取过程中,若监测到 pH 值偏离预设范围,立即通过自动加药系统调整,如添加酸溶液(如盐酸)或碱溶液(如氢氧化钠),将 pH 值控制在区间。电极测锡离子,在电子元件废水,确保处理合格。立杆式电极法水质监测站厂商

电极法测铂离子,在催化剂废水,助资源循环利用:催化剂生产和使用过程中,含铂催化剂(如汽车尾气催化剂、化工反应催化剂)报废后,经处理会产生含铂离子的废水。铂是一种稀有贵金属,具有极高的催化活性和经济价值,若随废水排放流失,会造成巨大的资源浪费;同时,铂离子虽毒性较低,但长期过量排放也会对水体生态造成一定影响,干扰水生生物的正常生理活动。催化剂废水成分复杂,除铂离子外,还含有其他金属离子(如钯、铑)、酸类、有机物等,若不能高效回收铂离子,既浪费资源又增加环境负担。采用电极法监测催化剂废水中的铂离子,铂离子选择性电极能在复杂废水基质中检测铂离子浓度,检测灵敏度高,能捕捉到微量铂离子,为资源回收提供数据。监测站将铂离子浓度数据实时传输至回收系统,工作人员根据浓度选择合适的回收工艺,如离子交换法或溶剂萃取法。在回收过程中,通过电极法实时监测废水中铂离子浓度变化,调整工艺参数,如离子交换树脂的流速、萃取剂的配比等,确保铂离子回收率达到 98% 以上。回收的铂可重新用于制作催化剂,实现资源循环利用,降低催化剂生产成本,减少贵金属资源消耗,同时减少废水污染,推动催化剂行业绿色发展。广东无人值守电极法水质监测站现货直发电极法测铊离子,在矿区,防痕量重金属危害。

电极法测钼离子,在冶炼废水,确保处理达标:冶炼行业在钼矿冶炼、合金钢生产等过程中,会产生含钼离子的废水。钼离子虽在低浓度下对人体和环境影响较小,但过量排放会对水体生态造成危害,如抑制水生藻类的光合作用,影响水体初级生产力;同时,钼离子在水体中积累,还可能对鱼类、贝类等水生生物的神经系统和生殖系统造成损害。此外,冶炼废水成分复杂,除钼离子外,还含有其他重金属(如铅、锌、铜)、硫化物、悬浮物等污染物,若钼离子未处理达标,会增加废水整体污染负荷,加大后续治理难度。采用电极法监测冶炼废水中的钼离子,通过钼离子选择性电极,能在复杂的废水基质中检测钼离子浓度,不受其他离子干扰,检测精度高,能准确反映废水处理效果。监测站将实时监测数据与国家冶炼行业废水排放标准对比(通常要求钼离子浓度低于 0.5mg/L),若浓度超标,立即提醒企业调整处理工艺。例如,采用化学沉淀法时,优化氢氧化钙投加量,使钼离子形成氢氧化钼沉淀;采用吸附法时,检查吸附剂(如活性炭、分子筛)是否饱和,及时更换以增强吸附效果,确保废水经处理后钼离子浓度达标排放,减少对水体环境的污染。
电极测汞离子,在医疗器械废水,防剧毒物质污染:医疗器械厂在生产含汞医疗器械(如体温计、血压计、牙科材料)或进行器械消毒时,会产生含有汞离子的废水。汞离子是剧毒重金属离子,具有极强的毒性和蓄积性,且易转化为挥发性更强、毒性更大的甲基汞。若医疗器械废水未经处理直接排放,汞离子会进入水体,在微生物作用下转化为甲基汞,通过食物链富集,浓度逐级放大,终进入人体,损害神经系统、消化系统和免疫系统,尤其对儿童和孕妇危害更大,可能导致智力发育障碍、胎儿畸形等严重后果。此外,医疗器械废水还含有消毒剂、有机物、病原微生物等污染物,若汞离子未有效去除,会加剧整体污染危害,对水体环境和人体健康构成重大威胁。采用电极法监测医疗器械废水中的汞离子,具有检测灵敏度极高(可检测纳克 / 升级别)、特异性强的优势。监测设备的汞离子选择性电极能捕捉到微量的汞离子,不受其他污染物干扰,通过的信号转换和数据处理,准确测定汞离子浓度。电极法测挥发性酚,在焦化废水,确保处理达标。

电极法测镓离子,在半导体废水,助资源回收:半导体生产过程中,外延生长、离子注入等工艺会使用含镓化合物(如三氯化镓),导致废水中含有镓离子。镓是一种稀有金属,在半导体行业应用,资源稀缺且价格昂贵,若随废水排放流失,会造成巨大的资源浪费;同时,镓离子过量排放会对水体生态造成危害,会抑制水生生物的生长繁殖,破坏水体生态平衡。半导体废水成分复杂,除镓离子外,还含有硫酸、氢氟酸、重金属(如砷、锑)等污染物,若不回收镓离子,既浪费资源又加剧污染。采用电极法监测半导体废水中的镓离子,镓离子选择性电极能在复杂废水基质中检测镓离子浓度,检测灵敏度高,能捕捉到微量镓离子,为资源回收提供数据。监测站将实时监测数据传输至回收系统,工作人员根据镓离子浓度选择合适的回收工艺,如溶剂萃取法或离子交换法。在回收过程中,通过电极法实时监测废水中镓离子浓度变化,调整萃取剂配比或离子交换树脂用量,确保镓离子回收率达到 95% 以上,回收的镓可重新用于半导体生产,实现资源循环利用,既降低了半导体生产成本,又减少了废水污染,推动半导体行业绿色发展。电极测镉离子,在电池厂废水,防重金属污染扩散。广东无人值守电极法水质监测站现货直发
电极法测钨离子,在硬质合金废水,确保处理达标。立杆式电极法水质监测站厂商
人工湿地出口,监测站测氨氮,评估净化效果:人工湿地是一种生态型污水处理技术,通过水生植物、微生物、基质的协同作用,去除废水中的污染物,氨氮是人工湿地主要去除的污染物之一。氨氮是水体中的重要营养物质,若未经处理排放,会导致水体富营养化,引发藻类大量繁殖,消耗水中溶解氧,造成水体缺氧,导致鱼类等水生生物死亡,破坏水体生态平衡。因此,监测人工湿地出口处的氨氮浓度,是评估人工湿地净化效果的指标。监测站配备高精度氨氮检测模块,采用纳氏试剂比色法或水杨酸分光光度法等成熟检测技术,能实时采集人工湿地出口处的水样,准确测定氨氮浓度。工作人员通过对比人工湿地进水口和出口处的氨氮浓度,计算氨氮去除率(通常要求人工湿地氨氮去除率不低于 60%),判断人工湿地的净化效果是否达到设计要求。若出口处氨氮浓度过高,去除率未达标,需分析原因并采取调整措施,如检查水生植物生长状况,及时补种或更换生长旺盛、吸收氨氮能力强的植物;或调整湿地的水力停留时间,确保废水与基质、微生物充分接触,提高氨氮去除效率;立杆式电极法水质监测站厂商