电极法测钕离子,在稀土厂废水,严格控排:稀土厂在生产钕系稀土材料(如钕铁硼永磁体)时,会产生含钕离子的废水。钕离子属于稀土金属离子,虽毒性较低,但长期大量排放会在水体中积累,对水生生物的生长发育产生抑制作用,影响水体生态系统的平衡;同时,稀土资源宝贵,随意排放会造成资源浪费。此外,稀土厂废水成分复杂,还含有其他稀土离子、重金属离子、酸或碱等,若钕离子未处理达标,会加剧废水的整体污染程度。采用电极法监测稀土厂废水中的钕离子,钕离子选择性电极能特异性识别钕离子,在复杂的废水基质中准确检测其浓度,检测结果稳定可靠。监测站将实时监测到的钕离子浓度与国家稀土工业废水排放标准对比,若浓度超标,会立即向稀土厂环保管理部门发送预警信息,要求企业采取整改措施。工作人员需检查废水处理工艺,如化学沉淀工艺中是否投加足量的沉淀剂(如氢氧化钠),确保钕离子形成氢氧化钕沉淀;或检查膜分离设备是否正常运行,确保钕离子被有效截留。通过严格监测和控制钕离子排放,确保稀土厂废水达标排放,既保护水体环境,又推动稀土行业的绿色可持续发展。电极测锗离子,在光纤厂废水,控污染物排放。湖泊电极法水质监测站

电极测铼离子,在航空材料废水,助资源回收:航空材料厂在生产高温合金(如含铼超级合金,用于航空发动机叶片)时,会产生含铼离子的废水。铼是一种稀有难熔金属,资源储量极少,价格昂贵,若随废水排放,不仅会造成严重的资源浪费,还会在水体中积累,对水生生物产生毒性,影响水体生态平衡。电极法监测航空材料废水中的铼离子,凭借铼离子选择性电极的高灵敏度和特异性,能在含有多种金属离子(如镍、钴、铬离子)的复杂废水中,准确检测出微量铼离子的浓度,为铼资源的回收提供数据支持。监测站将实时监测到的铼离子浓度数据传输至航空材料厂的资源回收部门,工作人员根据浓度数据判断是否具备回收价值及选择合适的回收工艺。若铼离子浓度较高,可采用溶剂萃取、离子交换等工艺进行回收,通过监测回收过程中废水中铼离子的浓度变化,判断回收效果,当浓度降至较低水平(符合排放标准)时,停止回收操作。通过电极法监测铼离子,既能助力航空材料厂实现铼资源的循环利用,降低生产成本,又能防止铼离子排放污染水体,实现经济效益与环境效益的统一。湖泊电极法水质监测站电极法测锰离子,在地下水,防影响水质口感。

电极法测铂离子,在催化剂废水,助资源循环利用:催化剂生产和使用过程中,含铂催化剂(如汽车尾气催化剂、化工反应催化剂)报废后,经处理会产生含铂离子的废水。铂是一种稀有贵金属,具有极高的催化活性和经济价值,若随废水排放流失,会造成巨大的资源浪费;同时,铂离子虽毒性较低,但长期过量排放也会对水体生态造成一定影响,干扰水生生物的正常生理活动。催化剂废水成分复杂,除铂离子外,还含有其他金属离子(如钯、铑)、酸类、有机物等,若不能高效回收铂离子,既浪费资源又增加环境负担。采用电极法监测催化剂废水中的铂离子,铂离子选择性电极能在复杂废水基质中检测铂离子浓度,检测灵敏度高,能捕捉到微量铂离子,为资源回收提供数据。监测站将铂离子浓度数据实时传输至回收系统,工作人员根据浓度选择合适的回收工艺,如离子交换法或溶剂萃取法。在回收过程中,通过电极法实时监测废水中铂离子浓度变化,调整工艺参数,如离子交换树脂的流速、萃取剂的配比等,确保铂离子回收率达到 98% 以上。回收的铂可重新用于制作催化剂,实现资源循环利用,降低催化剂生产成本,减少贵金属资源消耗,同时减少废水污染,推动催化剂行业绿色发展。
电极测锗离子,在光纤厂废水,控污染物排放:光纤厂在生产光纤预制棒、光纤涂层时,会使用含锗化合物(如四氯化锗),导致废水中含有锗离子。锗离子虽不属于剧毒重金属,但过量排放会对水体生态造成危害,会抑制水生藻类的生长,影响水体初级生产力,进而导致鱼类等高等水生生物食物短缺;同时,锗离子在水体中积累,会改变水体化学性质,影响水质。光纤厂废水还含有盐酸、有机物、悬浮物等污染物,若锗离子未控制排放,会加剧水体污染,增加环境治理难度。采用电极法监测光纤厂废水中的锗离子,锗离子选择性电极具有高灵敏度和特异性,能在复杂废水基质中准确检测锗离子浓度,不受其他污染物干扰,检测结果稳定可靠。监测站将实时监测数据与国家光纤行业废水排放标准对比,若锗离子浓度超标,立即向企业发送预警信息。工作人员需检查废水处理工艺,如优化化学沉淀法中氢氧化铵的投加量,使锗离子形成氢氧化锗沉淀;或检查吸附装置中的活性炭是否饱和,及时更换活性炭,增强对锗离子的吸附能力,确保废水中锗离子浓度达标后再排放,有效控制污染物排放,保护水体环境。电极测铼离子,在航空材料废水,助资源回收。

制冰厂用水,监测站测总硬度,防设备结垢影响效率:制冰厂用水中的总硬度主要由钙、镁离子构成,总硬度过高会导致制冰设备(如蒸发器、管道、制冰机内胆)结垢。水垢附着在蒸发器表面,会降低热交换效率,导致制冰时间延长,能耗大幅增加;堵塞管道会减小水流截面积,增加输水阻力,甚至导致管道破裂;附着在制冰机内胆会影响冰块成型质量,出现冰块表面不光滑、易碎裂等问题,同时还会滋生细菌,影响冰块卫生。此外,水垢清理需停机并使用化学除垢剂,既增加维护成本,又可能腐蚀设备,缩短设备使用寿命。因此,监测制冰厂用水总硬度至关重要。监测站采用 EDTA 络合滴定法或电极法,能实时采集用水样本,准确测定总硬度值(制冰厂用水总硬度通常要求低于 100mg/L,以碳酸钙计)。若监测到总硬度超标,工作人员需及时启动软化水处理设备,如离子交换器或反渗透装置,去除水中多余的钙、镁离子,将总硬度降至合格范围。在制冰过程中,监测站持续监测总硬度变化,确保水质稳定,有效防止设备结垢,保障制冰设备高效运行,降低能耗和维护成本,同时保证冰块质量和卫生。电极测溴离子,在饮用水,防消毒副产物超标。广东电极法水质监测站价位
农村饮水工程,监测站测 pH 值,保用水安全。湖泊电极法水质监测站
核电站循环水,监测站测放射性物质,保环境安全:核电站循环水在冷却核反应堆后,可能携带微量放射性物质(如氚、钴 - 60、铯 - 137 等),这些放射性物质若未经监测直接排放,会对周边水体、土壤和生物造成长期辐射危害。放射性物质具有半衰期长、辐射强度大的特点,即使浓度极低,长期接触也会破坏生物细胞结构,诱发基因突变、等疾病,还会在环境中持续累积,对生态系统造成不可逆损害。因此,对核电站循环水进行放射性物质监测,是保障环境安全的关键环节。监测站配备专业的放射性物质检测设备,如闪烁计数器、电离室等,能实时采集循环水样本,通过检测样本的辐射强度,准确识别并量化放射性物质的种类和浓度。工作人员会根据国家核安全法规中对核电站循环水放射性物质排放的严格限值,预设安全阈值。若监测到放射性物质浓度超出阈值,监测站会立即启动应急响应机制,停止循环水排放,排查放射性物质泄漏源头,如检查冷却系统管道是否破损、反应堆屏蔽是否完好等,并采取稀释、净化等措施降低放射性物质浓度,待浓度降至安全范围后,方可恢复循环水排放,确保周边环境安全。湖泊电极法水质监测站