首页 > 新闻中心
橡胶材料具有高弹性、易变形的特点,超声波刀柄通过特殊应用与参数设置实现高效加工。在橡胶模具加工中,超声波刀柄配合硬质合金刀具,采用中低频振动(25-30kHz),振幅 8-10μm,减少模具加工过程中的橡胶粘连与刀具磨损,提升模具表面光洁度;在橡胶制品的切割与修边加工中,采用高频振动(35-40kH...
超声波刀柄的运输与存储不当易导致结构损伤或性能下降,需遵循特定注意事项。运输过程中,需将刀柄固定在包装盒内,包装盒内填充缓冲材料如泡沫、海绵,避免运输过程中碰撞、跌落导致锥面损伤或内部组件移位;运输时避免刀柄受到挤压、暴晒或雨淋,防止外壳变形、锈蚀或内部电路受潮。存储时,需将刀柄清洁干净,去除表面油...
针对钛合金、高温合金等难加工金属材料的切削痛点,超声波刀柄通过针对性参数调整与结构设计实现高效适配。这类材料的加工难点在于切削力大、加工硬化严重,超声波刀柄通过 25-30kHz 的中低频振动,配合 8-12μm 的振幅,在刀具刃口形成高频冲击切削效应,有效降低切削阻力,减少刀具与材料的摩擦磨损。刀...
振动能量传递效率是超声波刀柄的性能指标之一,其优化需从结构设计、材料选择与工艺处理多方面入手。结构上采用一体化成型工艺,减少拼接缝隙带来的能量损耗,内部振动传导路径经过流线型设计,缩短能量传递距离,确保振动从发生器高效传递至刀具刃口。材料方面选用高弹性模量的合金材质,这类材料具备优异的振动传导性能,...
新能源领域(如光伏、风电、新能源汽车)对构件的轻量化与耐久性要求高,超声波机床可适配其加工需求。加工光伏硅片切割刀具时,超声波机床可精密加工刀具刃口,提升刃口锋利度与耐磨性,延长刀具切割硅片的数量;加工风电叶片复合材料连接件时,可避免连接件出现分层,提升连接强度,保障风电叶片的运行稳定性;加工新能源...
现代超声波机床的数控软件具备丰富功能,支撑高效精密加工:一是工艺参数库,内置不同材料(陶瓷、复合材料、金属)的加工参数模板,操作人员可直接调用,无需反复试切;二是路径仿真功能,可模拟刀具加工轨迹,提前发现路径干涉问题,避免撞刀事故;三是数据统计功能,自动记录加工工件数量、刀具使用寿命、设备运行时间等...
半导体行业对硅片、碳化硅晶圆等构件的加工精度要求极高,超声波机床可满足其精密加工需求。加工硅片边缘倒角时,超声波机床通过高频振动实现微小余量切削,倒角半径误差控制在 ±0.01mm,避免硅片边缘崩裂;加工碳化硅晶圆切割槽时,槽宽精度可达 ±0.005mm,槽壁粗糙度 Ra 0.2μm 以下,保障后续...
超声波机床运行中可能出现振动异常、加工精度下降、超声系统无响应等故障,需按步骤排查。若振动异常,先检查换能器与变幅杆连接是否松动,再查看主轴轴承是否磨损;若加工精度下降,需校准导轨平行度与主轴径向跳动,同时检查刀具是否磨损;若超声系统无响应,先确认超声发生器电源是否正常,再检查线缆连接是否牢固,排查...
超声功率是影响超声波机床加工效果的关键参数,其调节需根据加工场景动态调整,不同功率对加工的影响主要体现在三方面:一是加工效率,功率越高,振动能量越强,切削力越大,加工效率越高,例如加工硬质合金时,将功率从 500W 提升至 1000W,进给速度可从 200mm/min 提升至 400mm/min;二...
在医疗设备加工中,超声波机床的同步控制技术发挥着关键作用。我将围绕医疗设备精密、复杂的加工需求,结合原文同步控制的三点技术,阐述其具体应用。为确保医疗设备零部件的加工精度,超声波机床需实现 “振动 - 主轴 - 进给” 的同步控制,技术包括三点:一是振动相位同步,通过数控系统实时采集换能器振动信号,...
异形件(如不规则曲面、非对称结构构件)加工需工装保障定位精度,工装设计需遵循三大要点:一是定位基准统一,工装定位基准需与工件设计基准一致,采用销钉、定位块等结构,确保工件每次装夹的位置偏差小于 0.01mm;二是夹紧力均匀,根据工件形状设计多点夹紧结构,避免点夹紧导致工件变形,例如加工异形陶瓷件时,...
现代超声波机床的数控软件具备丰富功能,支撑高效精密加工:一是工艺参数库,内置不同材料(陶瓷、复合材料、金属)的加工参数模板,操作人员可直接调用,无需反复试切;二是路径仿真功能,可模拟刀具加工轨迹,提前发现路径干涉问题,避免撞刀事故;三是数据统计功能,自动记录加工工件数量、刀具使用寿命、设备运行时间等...