低温轴承的低温环境适应性评价指标体系:建立科学合理的低温环境适应性评价指标体系,对于评估低温轴承的性能至关重要。该体系涵盖多个方面的指标,包括力学性能指标(如抗拉强度、冲击韧性、硬度在低温下的保持率)、摩擦学性能指标(低温摩擦系数、磨损率)、密封性能指标(泄漏率)、振动性能指标(振动幅值、振动频率)等。同时,考虑到轴承在实际应用中的可靠性...
查看详细 >>低温轴承的超声波无损检测技术改进:超声波无损检测是低温轴承质量检测的重要手段,但在低温环境下,超声波在材料中的传播速度和衰减特性会发生变化,影响检测准确性。改进后的超声波检测技术采用宽带超声换能器,并根据不同温度下材料的声速变化,实时调整检测频率和增益。在 - 180℃时,将检测频率从常温的 5MHz 调整为 3MHz,可有效提高超声波在...
查看详细 >>高速电机轴承的形状记忆聚合物温控自适应密封装置:形状记忆聚合物(SMP)具有温度响应变形的特性,应用于高速电机轴承的密封装置可实现自适应密封。在轴承密封部位采用 SMP 材料制作密封唇,当轴承运行温度在正常范围内时,密封唇保持初始形状,提供良好的密封效果;当温度升高时,SMP 材料发生相变,密封唇自动变形,进一步紧密贴合轴表面,增强密封性...
查看详细 >>真空泵轴承的失效模式与机理剖析:在长期运行过程中,真空泵轴承面临多种失效风险。疲劳失效是常见的类型之一,轴承在交变载荷作用下,滚动体与滚道表面反复接触,致使材料内部产生微小裂纹,随着时间推移,裂纹不断扩展,终导致轴承表面剥落或断裂。例如,在频繁启停的真空泵中,轴承承受的载荷频繁变化,加速了疲劳裂纹的形成。此外,磨损失效也不容忽视,当润滑不...
查看详细 >>低温轴承的多物理场耦合仿真分析:利用多物理场耦合仿真软件,对低温轴承在复杂工况下的性能进行深入分析。将温度场、应力场、流场和电磁场等多物理场进行耦合建模,模拟轴承在 - 200℃、高速旋转且承受交变载荷下的运行状态。通过仿真分析发现,低温导致轴承材料弹性模量增加,使接触应力分布发生变化,同时润滑脂黏度增大影响流场特性,进而影响轴承的摩擦和...
查看详细 >>真空泵轴承疲劳寿命的加速试验研究:为快速评估真空泵轴承的疲劳寿命,加速试验方法被大规模应用。通过加大试验载荷、提高转速或改变环境温度等方式,加速轴承的疲劳失效过程,从而在较短时间内获取大量数据。例如,在高温高载荷条件下对轴承进行连续运转试验,模拟轴承在恶劣工况下的实际运行情况。试验过程中,实时监测轴承的振动、温度和磨损等参数,分析疲劳裂纹...
查看详细 >>低温轴承的智能传感集成技术:智能传感集成技术将温度、压力、应变等传感器集成到轴承内部,实现运行状态的实时监测。采用薄膜传感器制备技术,在轴承内圈表面沉积厚度只 50μm 的铂电阻温度传感器,其测温精度可达 ±0.1℃,响应时间小于 100ms。同时,利用光纤布拉格光栅(FBG)技术,在滚动体上制作应变传感器,可实时监测滚动接触应力。在低温...
查看详细 >>浮动轴承的自调节间隙结构设计:自调节间隙结构可使浮动轴承适应不同工况下的轴颈变形和磨损。设计一种基于形状记忆合金(SMA)的自调节结构,在轴承座内设置 SMA 元件,当轴承磨损导致间隙增大时,通过加热 SMA 元件使其变形,推动轴承内圈移动,自动补偿间隙。在发电设备汽轮机的浮动轴承应用中,自调节间隙结构使轴承在运行 10000 小时后,仍...
查看详细 >>浮动轴承的表面织构化对油膜特性的影响:表面织构化通过在轴承表面加工特定形状的微小结构,改变油膜特性。利用激光加工技术在轴承内表面制备圆形凹坑织构(直径 0.3mm,深度 0.05mm),这些凹坑可储存润滑油,形成局部富油区域,改善润滑条件。实验研究表明,带有表面织构的浮动轴承,在低速运转(1000r/min)时,油膜厚度增加 30%,摩擦...
查看详细 >>浮动轴承的梯度孔隙金属材料应用:梯度孔隙金属材料具有孔隙率沿厚度方向渐变的特性,应用于浮动轴承可优化润滑与散热性能。在轴承衬套制造中,采用金属粉末冶金法制备梯度孔隙铜基材料,其表面孔隙率约 30%,内部孔隙率逐步降至 10%。表面高孔隙率结构可储存更多润滑油,形成稳定油膜;内部低孔隙率部分则保证轴承的结构强度。实验表明,使用该材料的浮动轴...
查看详细 >>高线轧机轴承的纳米晶复合涂层表面处理技术:纳米晶复合涂层表面处理技术通过在轴承表面制备特殊涂层,提升其耐磨、抗腐蚀性能。采用磁控溅射和化学气相沉积(CVD)复合工艺,在轴承滚道表面沉积由纳米晶金属(如纳米晶镍)和陶瓷相(如 TiN)组成的复合涂层,涂层厚度控制在 1 - 1.5μm。纳米晶结构使涂层具有更高的硬度和塑性变形能力,陶瓷相则赋...
查看详细 >>真空泵轴承在真空泵启停过程中的受力变化:真空泵在启动和停止过程中,轴承的受力状态会发生明显变化。启动时,转子从静止状态加速到额定转速,轴承需要承受较大的启动扭矩和惯性力,同时由于转速的逐渐升高,还会产生不平衡力。在这个过程中,轴承的润滑状态也会发生变化,初始阶段润滑油可能未能充分分布到轴承各部位,导致局部润滑不良,增加磨损风险。停止过程中...
查看详细 >>