旋转陶瓷膜基本参数
  • 品牌
  • 领动
  • 型号
  • Pilot 系列、Scera 系列
  • 类型
  • 生产型过滤浓缩设备
  • 推动力
  • 加压式,离心力
  • 控制方式
  • 自动,半自动
  • 接触物料部分的材质
  • 陶瓷,耐蚀钢,塑料涂层
  • 更换方式
  • 可清洗
  • 适用对象
  • 食品用,酒类,化学药品,食品,水,涂料,污泥,药液,粉体、锂电添加剂、电解液、石墨烯、其他高浓高粘物料,烟雾,油,食用油
  • 工作连续性
  • 连续
  • 过滤精度
  • 超滤
  • 作用原理
  • 拦截过滤
  • 加工定制
  • 最高工作温度
  • 55
  • 适用领域
  • 化工、医药、环保、能源、食品饮料等
  • 有效过滤面积
  • 28
  • 外形尺寸
  • 3000×1200×2200
  • 产地
  • 江苏镇江
  • 样式
  • 盘式
  • 工作压力
  • 0.15
  • 适用粘度
  • 7
  • 是否跨境货源
  • 厂家
  • 江苏领动膜科技
  • 颜色
  • 不锈钢原色
旋转陶瓷膜企业商机

错流旋转膜技术与膜气浮的协同原理错流旋转膜技术与膜气浮的协同原理,基于流场耦合与界面作用强化,形成“动态分离-浮力截留”的高效净化体系。在流场协同层面,膜组件旋转产生的离心力与错流形成的剪切力叠加,使流场呈现强湍流状态。这种流态不仅破坏膜表面浓差极化层(与旋转陶瓷膜的动态流场强化机制呼应),还将膜孔释放的微气泡(5-50μm)切割成更均匀的分散体系,气泡密度较单一气浮提升40%以上,大幅增加与油滴、胶体的碰撞概率。传质强化体现在双重作用:旋转产生的二次流延长气泡停留时间(较静态气浮增加2-3倍),促进气液界面传质;错流则推动未上浮污染物持续流经膜表面,通过膜的筛分效应与气泡的浮力作用形成“截留-浮选”闭环,避免污染物在系统内累积。此外,膜孔曝气产生的微小气泡可作为“移动载体”,吸附污染物后在离心力导向下向液面迁移,减少膜孔堵塞风险;而错流及时将浮渣带离膜区域,与旋转陶瓷膜的剪切力抗污染机制形成互补,使乳化油、悬浮物去除率较单一工艺提升20%-30%。能耗 0.1-0.3kW/m²,比传统管式膜节能 60%-80%。锂电池正极材料回收中动态错流旋转陶瓷膜设备制造

锂电池正极材料回收中动态错流旋转陶瓷膜设备制造,旋转陶瓷膜

旋转陶瓷膜动态错流气浮工艺的典型流程与装置设计

旋转膜组件结构

膜材质可选用陶瓷膜,其具有耐污染、**度的特性;也可采用改性聚合物膜,如 PVDF,成本相对较低。膜孔径范围在 0.1 - 10μm,需依据污染物粒径进行恰当选择。旋转方式分为水平轴或垂直轴旋转,转速控制在 500 - 2000 转 / 分钟,借助离心力和剪切力强化气泡分散以及污染物的分离效果。

气液协同流道

气体从膜内侧通入,经膜孔溢出后形成微气泡;废水则在膜外侧以错流方式流动,旋转过程中产生的湍流促使气泡与污染物充分接触。


当系统运行时,膜片随轴一同高速旋转,料液以一定流速沿切线方向进入膜组件。在旋转产生的离心力、剪切力以及错流的共同作用下,污染物与微气泡充分接触并结合,随后上浮至液面,实现与水相的分离,清水则透过膜孔流出,完成整个处理流程。 山东动态错流旋转陶瓷膜生产厂家酱油、醋行业罐底浓液回收,提升资源利用率。

锂电池正极材料回收中动态错流旋转陶瓷膜设备制造,旋转陶瓷膜

错流旋转膜设备在乳化油处理中的技术优势

抗污染能力:动态剪切减少膜表面滤饼层形成,膜通量衰减速率比静态膜降低50%以上,清洗周期延长。

分离效率:油相截留率≥99%,水相含油量可降至50ppm以下,满足严格排放标准(如GB8978-1996三级标准≤100ppm)。

能耗与成本:相比化学破乳+离心工艺,药剂用量减少80%,能耗降低30%~50%,设备占地面积减少40%。

操作灵活性:可根据乳化油成分(如矿物油/植物油、表面活性剂类型)调整膜材质与工艺参数,适应性强。

环保性:无化学药剂残留,浓缩油相可回收,减少危废产生,符合绿色化工要求。

温敏菌体物料利用错流旋转膜系统提纯浓缩应用案例——益生菌浓缩提纯:工况:乳酸杆菌发酵液(菌体浓度15g/L,活菌数10⁹CFU/mL,适合温度30℃)。工艺参数:膜组件:50nm孔径α-Al₂O₃陶瓷膜(面积20m²),转速200rpm,错流速度0.8m/s,温控28±1℃。预处理:离心除杂(3000rpm),pH调至5.0(乳酸杆菌等电点pH4.8)。效果:浓缩至80g/L,活菌数保留率>95%(传统离心法活菌损失30%);透过液浊度<1NTU,可回用至培养基配制。与传统板框过滤相比,操作时间缩短60%,人工成本降低70%,且避免板框压滤时的高剪切破坏(压滤过程剪切力可达1000Pa)。该技术正在从工业领域向生物医药、新能源等领域渗透,有望在资源循环利用、绿色制造等方面发挥更大作用。

锂电池正极材料回收中动态错流旋转陶瓷膜设备制造,旋转陶瓷膜

错流旋转膜设备在乳化油处理中的技术优势

抗污染能力:动态剪切减少膜表面滤饼层形成,膜通量衰减速率比静态膜降低50%以上,清洗周期延长。

分离效率:油相截留率≥99%,水相含油量可降至50ppm以下,满足严格排放标准(如GB8978-1996三级标准≤100ppm)。

能耗与成本:相比化学破乳+离心工艺,药剂用量减少80%,能耗降低30%~50%,设备占地面积减少40%。

操作灵活性:可根据乳化油成分(如矿物油/植物油、表面活性剂类型)调整膜材质与工艺参数,适应性强。

环保性:无化学药剂残留,浓缩油相可回收,减少危废产生,符合绿色化工要求。 旋转膜开放式流道设计容纳浓粘物质,避免堵塞,实现粗滤精滤一体化。天津靠谱的旋转陶瓷膜实验型设备

动态错流的设计通过旋转剪切力减少浓差极化,以维持高粘度物料稳定通量。锂电池正极材料回收中动态错流旋转陶瓷膜设备制造

错流旋转陶瓷膜设备处理乳化油的关键原理

动态错流旋转陶瓷膜的工作原理基于以下技术优势:

动态错流与剪切效应

陶瓷膜组件高速旋转(转速通常1000~3000转/分钟),在膜表面形成强剪切流,明显降低浓差极化和滤饼层厚度,避免膜孔堵塞。

乳化油流体在离心力和剪切力作用下,油滴与杂质的运动轨迹被破坏,促进油滴聚结和杂质分离。

膜分离精度匹配

根据乳化油滴粒径(通常0.1~10μm)选择膜孔径:

微滤(MF)膜(孔径0.1~10μm):分离较大油滴及悬浮物。

超滤(UF)膜(孔径0.01~0.1μm):截留胶体态油滴、表面活性剂及大分子杂质。

陶瓷膜因耐污染、耐高温、化学稳定性强,更适合乳化油的复杂工况。

能量场协同作用

旋转产生的离心力场与压力场叠加,加速油滴向膜表面迁移,同时水相透过膜孔形成滤液,实现油相浓缩与水相净化。 锂电池正极材料回收中动态错流旋转陶瓷膜设备制造

与旋转陶瓷膜相关的**
与旋转陶瓷膜相关的标签
信息来源于互联网 本站不为信息真实性负责