碟式陶瓷膜基本参数
  • 品牌
  • 领动
  • 型号
  • LDM-01 / LDM-02
  • 类型
  • 超滤膜
  • 效率级别
  • 高效
  • 支撑体
  • 陶瓷
  • 材质
  • 陶瓷
  • 形式
  • 盘式
  • 特性
  • 防水,耐腐蚀,防火,防静电,耐低温,耐酸碱,耐高温
  • 用途
  • 物料浓缩提纯,固液分离,水处理,废水处理与回用,选煤,通用,油水分离,水过滤,油除杂质,医疗制药,干燥过滤,气液过滤,食品饮料
  • 过滤方式
  • 外压式
  • 适用对象
  • 油,水,污泥,化学药品,涂料,食品,粉体、锂电添加剂、电解液、石墨烯、其他高浓高粘物料,酒类,粉尘,空气,烟雾,药液,食用油
  • 操作压力
  • 0.15
  • 工作温度
  • 5-65
  • 过滤精度
  • 50nm-500nm 可选
  • 产地
  • 江苏镇江
  • 厂家
  • 江苏领动膜科技
  • 适用范围
  • 化工、医药、环保、能源、食品饮料等行业过滤浓缩设备
碟式陶瓷膜企业商机

初期投资成本较高曾是制约碟式陶瓷膜大规模推广的因素之一,但随着产业规模扩大与技术进步,成本呈下降趋势。一方面,规模化生产使得原材料采购成本降低,生产效率提升,单位膜组件的制造成本下降 15%-20%;另一方面,技术创新带来的膜性能提升,如通量增加、使用寿命延长,分摊到单位处理量上的成本也随之降低。例如,新一代碟式陶瓷膜通量较前代提升 30%,使用寿命从 3 年延长至 5 年,综合运行成本降低 25% 以上。预计未来,随着行业集中度提高、产业链不断完善,碟式陶瓷膜价格将进一步下降,与有机膜的价格差距将缩小至 1.5-2 倍,从而在更多对成本敏感的领域实现大规模替代。旋转膜辅助碟式陶瓷膜,减少膜污染,延长整体运行周期。锂电池正极材料回收中碟式陶瓷膜方案设计

锂电池正极材料回收中碟式陶瓷膜方案设计,碟式陶瓷膜

对于化工行业中催化剂的回收与循环利用,旋转膜系统与碟式陶瓷膜的技术组合提供了高效解决方案。化工反应中常用的催化剂(如贵金属催化剂、离子交换树脂催化剂)成本较高,传统过滤方式(如砂滤、滤纸过滤)难以彻底分离催化剂颗粒,导致催化剂流失率高,增加生产成本。旋转膜系统的高速旋转产生的离心力,能将催化剂颗粒与反应物料快速分离,减少颗粒在膜面的堆积;碟式陶瓷膜则以其窄孔径分布(孔径精度可达 ±5nm),精确截留 20-100nm 的催化剂颗粒,同时允许反应产物透过。在乙烯氧化反应中,该组合用于回收钯催化剂,催化剂截留率达 99.8% 以上,流失率低于 0.2%,回收后的催化剂活性保持率超 95%,可循环使用 10 次以上,相比传统过滤方式,催化剂损耗成本降低 40%-50%,同时避免了催化剂残留对后续产物提纯的影响,提升了终产品纯度。锂电池正极材料回收中碟式陶瓷膜方案设计其表面光滑,减少了污染物的附着点,进一步增强了抗污染能力,延长了膜的运行周期。

锂电池正极材料回收中碟式陶瓷膜方案设计,碟式陶瓷膜

    在化工行业的气体分离辅助物料处理中,旋转膜系统与碟式陶瓷膜也发挥着重要作用。气体分离(如天然气脱碳、合成气提纯)过程中,预处理环节需去除气体中的液体杂质与固体颗粒,避免后续膜组件污染。旋转膜系统的动态过滤模式,能高效分离气体中的液体雾滴(粒径>1μm,分离效率达);碟式陶瓷膜则以其耐高温(可耐受200℃以上)、耐高压(操作压力可达)的特性,适配气体预处理的严苛工况。以天然气脱碳预处理为例,天然气中常含有水蒸汽、凝析油雾滴与粉尘颗粒,该组合先通过旋转膜系统去除凝析油雾滴与粉尘(去除率达),再利用碟式陶瓷膜的疏水特性截留水蒸汽(温度降至-20℃以下),预处理后的天然气进入后续脱碳膜系统,脱碳膜的使用寿命延长2-3倍,脱碳效率稳定维持在90%以上,避免了杂质导致的脱碳膜孔堵塞与性能衰减。

除了在市政污水、食品、医药、化工等传统领域广泛应用外,碟式陶瓷膜在新兴领域也展现出巨大开拓潜力。在新能源领域,锂电池生产过程中产生的含锂废水,传统处理方法难以实现锂元素的高效回收,碟式陶瓷膜(纳滤级)可通过精确截留锂盐,实现锂元素回收率超 80%,助力资源循环利用与成本降低,随着全球对新能源汽车需求的爆发式增长,该领域对碟式陶瓷膜的需求将呈现指数级上升。在海水提铀方面,碟式陶瓷膜可在复杂海水环境中有效截留铀酰离子,为未来核能发展提供关键原料保障,虽然目前处于试验阶段,但一旦技术成熟实现产业化,将开启全新的市场空间。动态错流 + 碟式陶瓷膜,加快流体更新,降低浓差极化,维持高渗透通量。

锂电池正极材料回收中碟式陶瓷膜方案设计,碟式陶瓷膜

在化工行业的酸碱溶液净化中,旋转膜系统与碟式陶瓷膜的技术组合解决了传统净化方式的瓶颈。化工生产中常用的酸碱溶液(如硫酸、氢氧化钠溶液)在循环使用过程中,易混入金属离子、悬浮杂质等,导致溶液纯度下降,影响生产效率与产品质量。传统净化方式(如离子交换、沉淀过滤)易产生二次污染,且净化周期长。旋转膜系统的动态过滤特性,能在高浓度酸碱环境下稳定运行,减少膜面污染;碟式陶瓷膜则因耐酸碱腐蚀(可耐受 pH 0-14),能精确截留金属离子(如 Fe³⁺、Cu²⁺)与悬浮杂质(截留率>99%)。以电镀行业的硫酸溶液净化为例,该组合可去除硫酸中的 Fe³⁺(浓度从 500ppm 降至 5ppm 以下)与悬浮颗粒(粒径>1μm,去除率达 99.8%),净化后的硫酸溶液可重新用于电镀工艺,溶液循环利用率达 90% 以上,减少了酸碱溶液的排放量,降低了企业的采购成本与环保压力。在纺织行业,它可用于印染前的水质净化,去除水中的杂质,保证印染质量,同时处理印染后的废水。在乳化油废水处理中碟式陶瓷膜设备工程设计

在工业废水回用中,它可对废水进行深度处理,去除水中的污染物,使处理后的废水达到回用标准。锂电池正极材料回收中碟式陶瓷膜方案设计

针对化工行业的聚丙烯酰胺(PAM)浓缩,旋转膜系统与碟式陶瓷膜的联用解决了传统浓缩的性能损耗问题。PAM 溶液在浓缩过程中,传统蒸发浓缩易因高温导致 PAM 分子链断裂,降低其絮凝性能。旋转膜系统通过 400-800rpm 的转速,在膜面形成湍流,减少 PAM 分子的吸附与降解;碟式陶瓷膜耐高温(耐受 80℃)、耐高压(操作压力 0.5-0.9MPa),可在 40-60℃下将 PAM 溶液固含量从 10% 浓缩至 30%。应用该组合后,PAM 的分子量保持率超 95%,絮凝效率下降率低于 5%,浓缩后的 PAM 溶液稳定性良好,储存期延长至 12 个月。相比传统蒸发浓缩,该组合能耗降低 60%,且避免了 PAM 性能衰减,满足污水处理用 PAM 的质量要求,同时提升了 PAM 运输的经济性(固含量提升减少运输量)。锂电池正极材料回收中碟式陶瓷膜方案设计

与碟式陶瓷膜相关的**
与碟式陶瓷膜相关的标签
信息来源于互联网 本站不为信息真实性负责