一些传统防松螺栓,如带弹簧垫圈的螺栓,利用垫圈的弹性变形产生轴向力,增加摩擦力,但弹簧垫圈在横向振动下防松效果差,齿形垫圈还可能划伤接触面。弹簧垫圈在长期使用中可能会疲劳失效,失去防松作用。一些采用复杂机械防松结构的螺栓如用钢丝串联多个螺栓头部,形成相互制约,应用在发动机等关键部位,防松效果可靠但装配复杂,成本高昂。与之相比双旋向不松动螺栓结构简单,自身的双旋向螺纹结构就能实现可靠防松,安装方便,成本相对较低,且减少了运行维护的难度和费用。普通螺栓需要额外的防松措施,双旋向自锁紧不松动螺栓自身的双旋向自锁紧功能则简化了安装和维护流程。铁路不松动螺栓原理

不同行业和用户对双旋向自锁紧不松动螺栓有着多样化定制需求。一些特殊设备制造商可能需要螺栓具有特殊尺寸、材料或表面处理;科研机构在进行特定实验时,也可能要求定制独特结构的双旋向螺栓。这些定制需求推动了我们不断提升定制服务能力。定制的流程:首先用户提出详细的定制要求,包括尺寸、性能、数量等;我们对需求进行评估,确定是否能够满足;然后进行设计开发,制作样品;样品经用户检验合格后,再进行批量生产。整个流程中,我们与用户保持密切沟通,确保定制的双旋向螺栓产品符合用户的技术要求。铁路双旋向不松动螺栓装置双旋向自锁紧不松动螺栓利用双旋向螺纹的独特布局,让螺栓在承受各种外力时都能保持稳定的锁紧状态。

传统的普通螺纹紧固件为滞阻型防松,即通过增加摩擦力的方式来延缓螺母松动,或者设置机械装置、或者破坏螺纹等方式来阻止螺母松动。双旋向自锁紧不松动螺栓的防松是一种崭新的结构式防松,与普通螺纹防松类型不同,双旋向螺纹紧固件依靠左旋螺纹和右旋螺纹之间的相互作用力,将右旋螺母的松退力转化为左旋螺母的拧紧力,相互抵消实现作用力的平衡,达到防松动的效果。靠在连接件支承面上的右旋螺母起到紧固作用,非支承面上的左旋螺母起到锁紧作用。
螺栓作为一种常见的紧固件,在工业生产中有着广泛的应用。从机械设备的组装与连接,到桥梁与建筑结构的固定,再到汽车制造与维修、能源与化工设备的安装等各个领域,都离不开螺栓的作用。然而,螺栓松动却会给工业生产带来诸多严重问题。双螺纹自锁紧不松动螺利用独特的螺纹设计实现防松功能。其正向和反向螺纹段相互配合,当受到振动或外力作用时,不同旋向的螺纹产生相反的力,相互制衡,确保连接稳固,避免松动,保障设备稳定运行。双旋向自锁紧不松动螺栓的双旋向螺纹原理,是保障其在长期使用中不松动的关键所在。

2023年中国螺栓市场规模达868.94亿元,防松螺栓作为细分领域需求持续增长,在高铁、建筑、汽车、能源等领域的需求大,特别是高铁总里程增长,带动了防松螺栓的需求。预计2024-2029年全球防松螺栓市场年复合增长率约4.82%。防松螺栓市场方向有:高铁建设:中国高铁总里程超2168公里,防松螺栓需求量大且技术标准高。建筑与机械:基建扩张和装备制造推动需求,如风电、核电等领域对大强度防松件的依赖。汽车产业:新能源汽车和智能汽车对轻量化、耐腐蚀螺栓需求上升。能源产业:如风力发电塔架防松动等等。使用双旋向自锁紧不松动螺栓时,按照正确的安装顺序和扭矩进行操作,能充分发挥其自锁紧不松动的性能。铁路不松动螺栓单元
随着人们对产品质量和安全性的重视,双旋向自锁紧不松动螺栓在市场上的认可度将逐步提高。铁路不松动螺栓原理
风电行业中,不松动螺栓在塔筒法兰连接的应用直接影响风电场的发电效率与设备安全。风电塔筒高度可达 100 米以上,叶片旋转产生的交变载荷(±50kN)与强风冲击(风速超 25m/s 时)易导致普通螺栓出现疲劳松动,若法兰连接失效,可能引发塔筒倾斜、叶片损坏等重大事故。不松动螺栓针对该场景采用强度螺栓(10.9 级)与防松螺母集成设计,螺母内置弹性垫圈,可在载荷变化时自动补偿预紧力损失;螺栓螺纹段采用滚轧工艺加工,提升表面光洁度与疲劳强度,同时通过超声探伤检测确保无内部缺陷。某风电场 2.5MW 风机塔筒采用该类螺栓后,法兰松动故障率从 8% 降至 0.5%,风机平均无故障运行时间从 180 天延长至 300 天,每年减少停机维护时间约 200 小时,增加发电量约 20 万度,明显提升风电场经济效益。此外,螺栓表面的锌铝涂层可适应风电场地处野外的恶劣环境,有效抵御风沙、雨雪侵蚀,保障长期紧固性能。铁路不松动螺栓原理