AI技术的快速发展带来了前所未有的机遇,但同时也引入了复杂的安全风险。数据泄露可能导致敏感信息外泄,模型投毒和对抗攻击则会破坏AI系统的可靠性。国内外法规明确要求企业必须确保AI系统安全可控,并通过数据分类分级管理规范数据使用。因此,构建一个系统化的AI安全管理体系成为企业可持续发展的基石。AI安全管理体系能够整合风险管理、技术控制和流程优化,为企业提供quan面的防护框架。只有通过AI安全管理体系,企业才能在创新与安全之间找到平衡,实现长期增长。ISO/IEC42001作为全球shou个可认证的AI管理体系国际标准,为企业提供了建立AI安全管理体系的quan威指南。该标准以PDCA(计划-执行-检查-行动)循环为he心,强调风险管理和全生命周期管控,确保AI安全管理体系能够动态适应不断变化的威胁环境。通过ISO/IEC42001,企业可以系统化地识别、评估和处置AI相关风险,从而提升整体安全水平。AI安全管理体系在这一标准下,不仅覆盖技术层面,还涉及组织文化和流程优化,实现从战略到执行的无缝衔接。移动应用需向用户明确 SDK 第三方共享的具体主体与数据类型,保障知情权与选择权。上海金融信息安全管理

云SaaS环境下的隐私信息管理体系(PIMS)落地需结合SaaS服务的分布式架构、多租户隔离、服务商依赖等特性,制定分阶段、可落地的实施路线图。第一阶段he心是数据资产梳理与分类分级,需协同SaaS服务商quan面盘点数据存储位置、处理流程、流转路径,明确数据类型(如个人敏感信息、业务数据)与安全级别,建立动态更新的数据资产图谱。第二阶段聚焦权限管控与访问审计体系搭建,基于“min必要权限”原则配置用户访问权限,实现多租户环境下的数据隔离,同时部署日志审计系统,对数据访问、修改、传输等操作进行全程记录,确保可追溯、可审计。第三阶段需明确责任划分与合规协同,与SaaS服务商签订数据安全协议,界定数据存储、处理、备份等环节的安全责任,明确服务商的合规义务与违约赔偿机制。此外,还需建立常态化的合规评估与优化机制,结合法规更新与业务变化,动态调整PIMS体系,同时加强内部员工与服务商的合规培训,提升隐私保护意识。落地过程中需重点解决SaaS环境下数据控制权分散、安全责任界定模糊等问题,通过技术手段与管理措施的协同,实现隐私保护与业务发展的平衡。 深圳网络信息安全供应商网络信息安全评估结果需形成风险等级报告,明确高风险项整改优先级与实施路径。

2025年9月24日下午,“安全智造2025——AI赋能智能制造安全新生态”主题论坛在国家会展中心(上海)圆满落幕。安言咨询总经理秦峰受邀主持本次论坛。本次论坛聚焦人工智能技术在智能制造安全领域的应用与治理,共同探讨AI驱动下智能制造面临的安全挑战与应对策略。汇聚ding尖智慧,yin领数字制造安全标准与发展为深化数字制造领域网络与信息安全的融合发展,加快构建行业技术标准体系,推动研发与应用落地,上海市信息安全行业协会为首批16位来自zhi名企业的技术ling袖担任数字制造领域zhuan家。这批受聘zhuan家不仅是各自企业的技术负责人,更是未来推动行业技术规范制定、关键技术攻关和产业生态建设的he心智囊团。他们的加入,将为智能制造安全可控发展提供重要支持和方向指引。来自本市高校、企业、科研院所等二十余家单位的近四十位技术zhuan家受聘成为考评员,其中,安言咨询总经理秦峰也有幸或此殊荣。这支化考评员队伍的建立,标志着上海市信息安全行业协会人才评价体系迈入更加规范化、标准化的发展新阶段,为产业持续输送高质量、能战斗的实战型人才提供了制度保障。主题演讲环节。
在技术防护体系之下,治理机制的革新成为稳固责任边界的基石。数据保护影响评估(DPIA)正在从形式化流程转变为决策he心——某电商平台在将用户地址数据共享给物流商前,通过DPIA评估发现对方未通过ISO27701认证,果断终止合作,避免了可能的泄露风险。应急响应演练则检验着控制者与处理者的协同能力。某次模拟演练中,控制者(企业)与处理者(云服务商)在2小时内完成漏洞修复、用户通知与监管报告,这种“肌肉记忆”的养成,使得真实泄露事件中的损失控制效率提升3倍。首席隐私官(CPO)岗位的设立,标志着企业隐私治理进入专业化时代。某制造企业的CPO主导建立了“法律-技术-业务”三角协作机制:法律团队解读GDPR新修订,技术团队部署AI脱min工具,业务团队优化数据收集流程。这种跨部门协同,使得该企业PII泄露事件发生率同比下降67%。ISO37301强调合规文化培育,推动组织形成全员参与的合规管理氛围。

云SaaS环境下PIMS的落地离不开服务商与用户的责任协同,he心在于明确数据处理各环节的安全责任划分,避免因权责模糊导致合规风险。从责任划分原则来看,应遵循“谁处理、谁负责”与“共同责任”相结合的原则:SaaS服务商作为数据处理的技术支持方,需承担数据存储、传输、处理等技术层面的安全责任,包括提供安全稳定的服务环境、部署数据加密、访问控制等技术措施、定期开展安全评估与漏洞修复等。用户作为数据的所有者或控制方,需承担数据处理的管理责任,包括明确数据处理目的与范围、制定内部数据使用规范、加强员工合规培训、对数据处理行为进行监督等。具体责任划分方面,在数据存储环节,服务商需保障存储环境的安全性,防范数据泄露、丢失风险;用户需明确数据存储的地域要求,确保符合跨境数据传输相关规定。在数据处理环节,服务商需按照用户的要求合规处理数据,不得超范围处理;用户需对数据处理的合法性负责,确保数据来源合规、处理目的正当。在安全事件响应环节,服务商需及时发现并通知用户安全事件,提供技术支持协助处置;用户需主导安全事件的应对,履行通知数据主体、向监管机构报告等义务。为确保责任协同落地,双方需在服务协议中明确权责划分条款。 企业网络安全培训需强化实战演练,通过钓鱼邮件模拟、应急响应推演提升实操能力。深圳企业信息安全设计
针对中小企业的信息安全解决方案应具备高性价比与易操作性特点。上海金融信息安全管理
PIMS隐私信息管理体系建设需明确数据主体权利,建立便捷的信息查询与删除通道。数据主体权利保障是隐私保护的he心内容,也是PIMS体系合规性的重要体现,《个人信息保护法》明确规定了个人享有信息查询、更正、删除、撤回同意等多项权利,企业必须在体系中建立对应的保障机制。首先需在体系中明确数据主体的各项权利及行使方式,避免因规则模糊导致用户wei权困难。其次要建立便捷的权利行使通道,如线上通过官网、APP设置查询与删除入口,线下设立服务窗口,确保用户能够快速提交申请。同时需规定权利响应时限,如收到查询申请后15个工作日内完成答复,确保用户权利得到及时保障。某社交平台因未在PIMS体系中建立便捷的删除通道,用户需提交多项复杂材料且等待超过30天才能完成信息删除,被监管部门责令整改并处罚。此外,体系还需包含权利行使的记录与归档机制,确保每一次权利响应都可追溯。因此,明确数据主体权利并建立便捷通道,既是合规要求,也是提升用户信任度的重要举措,是PIMS体系建设的he心内容之一。 上海金融信息安全管理
AI技术的快速发展带来了前所未有的机遇,但同时也引入了复杂的安全风险。数据泄露可能导致敏感信息外泄,模型投毒和对抗攻击则会破坏AI系统的可靠性。国内外法规明确要求企业必须确保AI系统安全可控,并通过数据分类分级管理规范数据使用。因此,构建一个系统化的AI安全管理体系成为企业可持续发展的基石。AI安全管理体系能够整合风险管理、技术控制和流程优化,为企业提供quan面的防护框架。只有通过AI安全管理体系,企业才能在创新与安全之间找到平衡,实现长期增长。ISO/IEC42001作为全球shou个可认证的AI管理体系国际标准,为企业提供了建立AI安全管理体系的quan威指南。该标准以PDCA(...