个人信息保护合规审计重磅解读(二)——个人信息保护合规审计的开展文接上期“引用上一期的链接”,在明确了个人信息保护合规审计的背景后,本次为大家带来个人信息保护合规审计的开展。1.规划审计流程和了解审计权限个人信息保护合规审计的审计规划:1)明确审计目标与审计对象:与管理层进行沟通明确审计目标,明确审计工作重点。根据审计目标选定合适的审计对象(业务场景、应用形态、处理环节等),初步摸排合规情况。2)制定审计计划组建团队:初步调研审计对象,制定审计计划,组建相关部门团队开展审计工作。3)执行审计工作:综合采用访谈、文件审阅、系统调用等多种手段梳理个人信息处理活动,识别相关法律法规规定,依据法律法规规定进行评价。4)编制与出具审计报告:撰写审计报告,与利益相关方沟通确认审计报告内容,出具审计报告,对审计报告进行解读。5)制定整改计划并实施:就审计工作发现的问题确定处置方案,制定整改计划并实施。审计报告需包含切实可行的优先级改进建议,建立跟踪机制确保闭环。广州网络信息安全标准

2025伊始,DeepSeek横空出世,这令持续日久的AI热潮再添薪火,一时间举国范围掀起了大模型部署与探索的“**运动”。挑战与机遇并存,置身其中,网络安全业界怎会无动于衷?作为追风使者和传播达人,安在新媒体于2025年3月创新推出***">“AI安·在”探索计划,旨在携安在行业影响、业界资源和能力,以企业调查、笔会众智、社群协作、媒体传播、价值对接等多种途径和方式,邀各界合作,借大模型安全“推波助澜”,为网安业界发展不懈助力。现如今,两个多月过去,“AI安·在”探索计划的首份成果即将落地,那就是,国内***份以用户视角***洞察AI大模型在各行业探索实践的应用场景和安全需求的调查报告——《2025人工智能企业实践及安全需求用户调查报告》。企业AI实践及安全需求调查背景自2025年3月末开始,安在新媒体策划**并发起专项,基于诸子云社群(由**各地各行各业企业**网络安全业者汇聚而成的网安甲方社群)做问卷调查,结合重点对象**访谈,历时2个月,共计采集1023份有效样本,**终完成《2025人工智能企业实践及安全需求用户调查报告》。企业信息安全标准若企业缺乏系统的合规管理,很可能在 “不知情” 中踩雷。

在客户越来越关注数据安全的时代,拥有完善的数据安全保障体系的企业,更容易赢得客户的信任和合作机会,从而在市场竞争中脱颖而出。数据安全风险评估实施流程03以《GB/T45577-2025数据安全技术数据安全风险评估方法》为例,来看一下数据安全风险评估的实施流程:第一阶段:评估准备——谋定而后动评估准备阶段是整个数据安全风险评估工作的基石。在这一阶段,首先要确定评估目标,明确此次评估旨在解决的**问题。其次,划定评估范围至关重要,需精细界定涉及的业务领域、系统架构以及数据范畴。再者,组建一支的评估团队,团队成员应涵盖技术、法务、业务等多领域人才,为评估提供准确的信息。***,制定详细的评估方案,合理规划时间进度、资源调配、评估方法以及所需工具,确保评估工作有条不紊地推进。第二阶段:信息调研——摸清家底信息调研阶段是深入了解企业数据安全现状的关键环节。对数据处理者进行调研,***了解企业的**架构,明确各部门和人员在数据安全方面的职责和权限。对业务系统展开调研,梳理关键业务流程以及支撑这些流程的系统架构,清晰掌握数据在企业内部的流转路径。进行数据资产识别,详细盘点企业所拥有的数据类型、规模以及分布情况。
通过深度解析厂商侧的成熟解决方案,为企业网络安全创新与体系建设注入了兼具前瞻性与实操性的创新思路与实践路径。《大模型安全护栏》李雪鹏观安信息人工智能产品部副总经理观安信息大模型安全护栏体系以技术链与应用链为**,构建三层递进防护架构:在大模型建设安全层面,构建内生防护体系:训练数据端建立合规获取、标注安全、增广合成的全流程管理,通过多维度过滤防数据投毒;算法模型端采用对抗训练增强鲁棒性,以检索增强生成和思维链技术缓解"幻觉",通过特征属性分析提升可解释性;系统平台实施安全开发生命周期管理,强化供应链管控与漏洞检测;业务应用端部署输入输出护栏,通过显隐式水印实现AIGC内容溯源,构建账号风控体系。针对第三方模型调用安全,建立分层防控机制:整合第三方能力时,通过供应商安全评估、输入输出动态监测、模型微调加固形成风险缓冲,利用SCA工具检测组件漏洞;员工使用场景实施数据分类***、API调用审计与沙箱隔离,构建私有化部署体系;AI辅助代码生成环节强化代码审查与自动化扫描,通过依赖库白名单与相似性检测规避知识产权风险,集成安全中台能力。服务输出安全维度构建全链条防御:针对提示注入等恶意行为。在《个人信息保护法》强制要求下,个人信息保护合规审计已成为企业运营的刚性需求。

更多集中在安全运营与AI运营场景——企业内部自建知识库生成报告,厂商则提供数据处理分析等赋能服务,不过业内认为此模式尚未充分释放AI安全的潜在价值。投资视角下,底层大模型赛道已被豆包、DS、GPT等巨头占据,中间层的智能体和编排因被视为**终会并入大模型而不被看好,唯有端到端的交互性AI被视作突破口,即聚焦特定领域痛点提供直接解决方案,类似大众点评为用户精细匹配服务的模式。这一趋势可从印巴***中得到启示:巴基斯坦歼十战机击落六架阵风的关键,并非单一装备性能,而是后台数据链的协同能力,类比到安全领域,未来企业即便采购了诸多单项强大的安全产品,若缺乏后台数据链的整合联通,仍难以实现安全能力的**大化交付,这也指向AI安全未来发展需更注重体系化协同与价值闭环。一句话总结:点对点,以结果为导向的AI安全应用才是未来的趋势。李雪鹏:大模型安全需从**、企业与C端用户三个维度协同考量。**层面在中美AI底层竞争中聚焦大模型安全,通过推动合规高质量数据集建设与数据要素保障体系,夯实大模型发展的底层安全基础;企业层面因大模型改变传统数据使用模式(如文档传输与信息获取方式革新),面临内部数据泄露风险。评估数据加密、访问权限控制等安全措施是否到位,形成 “风险等级清单”。杭州银行信息安全管理体系
这些看似微小的操作,一旦被监管部门查处,轻则面临数金额的罚款,重则损害品牌信誉、流失重要用户。广州网络信息安全标准
成为企业动态合规的“预警雷达”和“免*系统”。b)监管常态化与穿透式检查:网信办、工信部、市监总局等多部门协同监管成为常态,主动监测和“双随机”抽查结合。审计报告是企业自证合规、争取监管信任的关键“通行证”。c)技术驱动与审计智能化:大数据、AI技术在自动化数据发现、异常行为监测、风险建模中应用加深。审计需融合技术工具,提升覆盖广度、深度与效率,应对海量数据处理挑战。d)生态协同与标准统一:供应链、平台生态中的数据共享责任及时梳理清晰。审计范围需延伸至第三方合作方,并推动行业最佳实践和标准互认,降低生态合规成本。e)**规则接轨与跨境治理强化:伴随《促进和规范数据跨境流动规定》等细则出台,跨境数据传输审计(如SCCs、安全评估)成为焦点。审计需具备**视野,确保企业满足境内及目标市场合规要求。总结:个人信息保护合规审计是企业应对强监管、规避高额处罚、维护商业信誉的**管理工具。在我国法规持续完善、监管日益严格、技术深度赋能、生态协同发展及跨境规则强化的趋势下,其作用已从被动合规升维为主动风险管理与价值创造的战略支撑。企业必须构建常态化、化、智能化的审计机制,方能行稳致远。广州网络信息安全标准
ISO27001认证的长期价值的远超认证费用,能降低数据泄露成本并提升市场竞争力。通过认证的企业平均数据泄露成本降低37%,投标成功率提升28%,部分企业还能凭借认证证书降低网络安全保险费率15%。某零售企业通过ISO27001认证后,不仅完善了安全防护体系,还以认证证书为依托,获得银行200万信用daikuan额度,拓宽融资渠道。认证过程能推动企业建立系统化的信息安全管理体系,提升全员安全意识,减少安全事件发生概率。对于出口型企业,ISO27001认证作为国际通用标准,能提升海外客户信任度,助力拓展国际市场。因此,认证费用应视为长期投资,而非单纯的合规成本。个人信息出境标准合同需按国家网信部...