公司官网热仿真案例--段落节选154:(热能相关模拟F节)从热解混合气cn1 hn2的CFD仿真浓度图中可以看出,两个极高浓度的区域主要集中在气体薄层区附近,分别对应料床热解过程中产生的**峰和次波峰位置。在薄层区中部,由于上方燃烧速度极快,导致比较高浓度的热解混合气在向上扩散时迅速稀释;而左侧次高浓度区因上方燃烧速度相对较低,其浓度在向上扩散过程中的衰减速率较慢。根据氧气o2浓度场的分析,气体薄层区左段外加的空气为该区域提供了较高的氧气浓度分布;相比之下,右侧的氧气浓度受到右段添加的大流量碳化用水蒸气的影响而被抑制,限制了氧气向左侧的扩散。此外,水蒸气h2o浓度场显示,大量添加于气体薄层区右段的碳化用水蒸气扩散后形成了较高的局部浓度,甚至对燃烧反应产生了一定的抑制作用。CFD模拟图像中部出现的条带状浅蓝色标记,则反映了H2O作为燃烧产物之一的低浓度存在。基于多年行业经验与技术优势,远筑流固仿真团队专注流体力学难题的咨询与仿真分析服务。cfd数值模拟仿真技术
我们的技术宗旨包含四个关键原则:谨慎—在处理“量”的问题时,强调建立多层级的数据核验流程。流体仿真从几何建模、材料属性录入到边界条件设置,涉及大量输入参数,需通过多人交叉复核机制,防止基础性数据偏差;准确—面对“质”的判断,避免不必要的简化。例如在多相流CFD模拟中,是否考虑相间耦合对结果影响较大,需依据具体工况进行评估,不宜一概采用非耦合模型;可靠—在工程设计中建议适度高于基础规范要求。如结构强度优化虽有行业规定的极低安全系数,但为提升长期运行可靠性,可适当增加安全裕度,形成更稳妥的设计方案;稳定—CFD优化过程中优先采用经实践验证的常规方法。在导流或整流结构存在多种可行方案时,倾向于选择行业内成熟应用的技术路径,既有助于控制实施风险,也便于制造阶段的选型与落地。流体仿真是什么通过专业课程,远筑流固仿真涵盖湍流分析及边界层建模等CFD高阶技术要点。

杭州远筑流体技术有限公司在技术实践中坚持以下准则:(1)细致严谨—对量化数据建立多环节交叉校验机制。CFD仿真涉及几何建模、材料参数录入、初始与边界条件设定等多个输入节点,相关数值需经不同人员单独复核,以构筑防止基础性错误的保障体系;(2)稳妥务实—优先采用经过工程验证的成熟方法。面对流体仿真中导流、调控等环节存在的多种技术选项,倾向于选择行业普遍采纳的常规方案,既有助于控制实施不确定性,也便于后续制造与选型;(3)注重细节—关键物理过程的模拟应避免不当简化。例如在多相流CFD分析中,是否引入相间相互作用会因工况差异带来不同误差表现,必须依据实际运行条件审慎决策,不可随意忽略耦合效应;(4)强化保障—设计参数应保留合理余量。结构强度优化不应只满足规范中的极低安全系数要求,而需结合具体使用环境,适度提升安全裕度,以增强产品在实际应用中的可靠性。
公司官网cfd模拟案例--段落节选105:(流场优化分析E节)本案例涉及一套大型气体处理系统中的中间输送管道,由8台出口流量相同的子设备组成,先按3支管与5支管分为两组,分别汇入两条主管,到后面合并至一条总管输出,出口静压设定为100 Pa。参见以下两图:根据流体仿真所得的未优化前的压力分布显示,原始管道在关键连接区域结构较为简单,导致局部流动受阻,出现“憋气”现象,其中5支管组对应的5个入口位置压力明显偏高,整体压差超过700 Pa。针对该问题,对管道布局进行了局部导流结构优化,并重新开展流体仿真分析,结果见优化完的压力分布。优化后,5支管入口处的压力明显降低,系统总压差降至约400 Pa,流动性能得到改善。基于CFD仿真技术积累,远筑流固仿真为研发周期优化提供可靠技术支持与解决方案。

公司官网cfd模拟案例--段落节选90:(漩涡模拟相关G节)与自然发展的入口湍流不同,人工添加的入口湍流速度脉动通常采用均匀湍动能分布,其值通过雷诺平均法结合平均轴向流速和水力直径估算。此类CFD仿真得到的入口速度分布虽宏观均匀且总湍能与实际一致,但下游流速分布与真实情况存在明显差异(见后续障碍物绕流案例图示)。而完全自然发展的入口湍流条件,可通过前置超长管预分析模块实现:从零湍动能的静水状态开始模拟,经过充分流动过程累积湍动能,直至湍动能平均值在模块出口前达到稳定状态,表明模块长度足够。此时可将模块出口截面的流速分布数据动态链接至下游流体仿真模型的入口。远筑流固仿真技术覆盖结构-流体耦合分析,构建科研创新全生态支持。流体仿真学校
从基础热仿真到复杂流体模拟,远筑流固仿真提供多领域工程应用解决方案。cfd数值模拟仿真技术
公司官网cfd仿真案例--段落节选135:(噪声模拟B节)以下通过一个气动噪声的CFD分析案例,展示上述声学性能模拟所获得的结果。该案例模拟的是平直方形管道内的气体湍流流动,其中包含一个障碍物绕流结构:气体从左侧流入,在前半段遇到一根以55度角斜穿侧壁的小方管;入口总流量保持恒定,对应横截面上轴向(y轴方向)的平均流速为4.0 m/s。下图展示了流体仿真的几何模型及时间平均流速分布。从小方管表面的声功率级分布可见,由绕流引发的两个主要声源区域位于其迎风面**外侧边缘,即边界层分离起始位置,声功率级约为51dB;相比之下,背风面的声功率级明显较低,且内侧边缘的值略高于外侧边缘。此外,从管道外壁面的声功率级分布来看,小方管下游尾流影响区域对应的两侧壁面声功率有所升高,其量级与小方管背风面内缘处相近,局部比较高值约为33 dB。cfd数值模拟仿真技术
杭州远筑流体技术有限公司,是一家专业从事以流体计算为主、兼顾其它多物理场耦合仿真的技术服务型公司,我们期待为各类科研、工业和工程方向客户,提供高性价比的流体仿真项目模拟和仿真培训服务。本公司成立于2014年,在硬件上配备有良好的高性能计算备,主要技术骨干拥有15年以上行业从业经验,并能紧跟行业的技术革新趋势。我司在2022年获得省科技厅颁发的“浙江省科技型中小企业”资格证书。我们擅长的、且在行业较有难度的技术项目包括:湍流大涡模拟、非常规问题二次开发、流场诊断与优化、多相流模拟和动态流固耦合分析等。我们的重点业绩包括:与中国船舶重工集团、中国电子工程设计研究院、中节能集团、国家电力投资集团、中国核工业集团、中国中车集团等多家央企集团的直属单位达成项目合作;通过长期流场优化积累技术手段并获得实用新型专利2项。