企业商机
SaaS基本参数
  • 品牌
  • 送道
  • 公司名称
  • 上海冕勤信息技术有限公司
  • 服务内容
  • 软件开发,软件外包,软件定制,管理系统,技术开发,APP定制开发
  • 版本类型
  • 标准版
  • 适用范围
  • 企业用户,个人用户
SaaS企业商机

智能骑手排班业务背景这是随着外卖配送的营业时间越来越长而衍生出的一个项目。早期,外卖只服务午高峰到晚高峰,后来大家慢慢可以点夜宵、点早餐。到如今,很多配送站点已经提供了24小时服务。但是,骑手不可能全天24小时开工,劳动法对每天的工作时长也有规定,所以这一项目势在必行。另外,外卖配送场景的订单“峰谷效应”非常明显。上图是一个实际的进单曲线。可以看到全天24小时内,午晚高峰两个时段单量非常高,而闲时和夜宵相对来说单量又少一些。因此,系统也没办法把***24小时根据每个人的工作时长做平均切分,也需要进行排班。对于排班,存在两类方案的选型问题。很多业务的排班是基于人的维度,好处是配置的粒度非常精细,每个人的工作时段都是个性化的,可以考虑到每个人的诉求。但是,在配送场景的缺点也显而易见。如果站长需要为每个人去规划工作时段,其难度可想而知,也很难保证分配的公平性。外卖配送saas系统,适合做本地生活的公司,支付代理商、信息技术代理商、代运营团队、外卖骑手或配送公司。四川同城配送SaaS租赁

用户质疑SaaS是很正常的,但是从多个方面来看,在十几年前业界关于电子商务的不休争论时,这些质疑就已经存在了。SaaS服务模式与传统许可模式软件有很大的不同,它是未来管理软件的发展趋势。相比较传统服务方式而言SaaS具有很多独特的特征:SaaS不仅减少了或取消了传统的软件授权费用,而且厂商将应用软件部署在统一的服务器上,免除了**终用户的服务器硬件、网络安全设备和软件升级维护的支出,客户不需要除了个人电脑和互联网连接之外的其它IT投资就可以通过互联网获得所需要软件和服务。此外,大量的新技术,如WebService,提供了更简单、更灵活、更实用的SaaS。另外,SaaS供应商通常是按照客户所租用的软件模块来进行收费的,因此用户可以根据需求按需订购软件应用服务,而且SaaS的供应商会负责系统的部署、升级和维护。而传统管理软件通常是买家需要一次支付一笔可观的费用才能正式启动。四川同城配送SaaS租赁抖音外卖来了,解决外卖配送是一种刚需,可以使用送道的外卖聚合配送saas软件。

所以,在这个项目中,基本可以确定这样的技术路线。首先,只能做启发式定向搜索,不能在算法中加随机扰动。不能允许同样的输入在不同运行时刻给出不一样的优化结果。然后,不能用普通迭代搜索,必须把这个问题结构特性挖掘出来,做基于知识的定制化搜索。说起来容易,具体要怎么做呢?我们认为,**重要的是看待这个问题的视角。这里的路径规划问题,对应的经典问题模型,是开环TSP问题,或是开环VRP的变种么?可以是,也可以不是。我们做了一个有意思的建模转换,把它看作流水线调度问题:每个订单可以认为是job;一个订单的两个任务取餐和送餐,可以认为是一个job的operation。任意两个任务点之间的通行时间,可以认为是序列相关的准备时间。每一单承诺的送达时间,包括预订单和即时单,可以映射到流水线调度问题中的提前和拖期惩罚上。

配送团队**终选用的是按组排班的方式,把所有骑手分成几组,规定每个组的开工时段。然后大家可以按组轮岗,每个人的每个班次都会轮到。这个问题比较大的挑战是,我们并不是在做一项业务工具,而是在设计算法。而算法要有自己的优化目标,那么排班的目标是什么呢?如果你要问站长,怎么样的排班是好的,可能他只会说,要让需要用人的时候有人。但这不是算法语言,更不能变成模型语言。决策变量及目标设计为了解决这个问题,首先要做设计决策变量,决策变量并没有选用班次的起止时刻和结束时刻,那样做的话,决策空间太大。我们把时间做了离散化,以半小时为粒度。对于***来讲,只有48个时间单元,决策空间大幅缩减。然后,目标定为运力需求满足订单量的时间单元**多。这是因为,并不能保证站点的人数在对应的进单曲线情况下可以满足每个单元的运力需求。所以,我们把业务约束转化为目标函数的一部分。这样做还有一个好处,那就是没必要知道站点的总人数是多少。送道配送saas系统,适合连锁品牌自配送商家租用,自己管理外卖订单、建立自配送团队。

而我们面临的问题规模,前几年只是区域维度的调度粒度,一个商圈一分钟峰值100多单,匹配几百个骑手,但是这种乘积关系对应的数据已经非常大了。现在,由于美团有更多业务场景,比如跑腿和全城送,会跨非常多的商圈,甚至跨越半个城市,所以只能做城市级的全局优化匹配。目前,调度系统处理的问题的峰值规模,是1万多单和几万名骑手的匹配。而算法允许的运行时间只有几秒钟,同时对内存的消耗也非常大。另外,配送和网约车派单场景不太一样。打车的调度是做司机和乘客的匹配,本质是个二分图匹配问题,有多项式时间的比较好算法:KM算法。打车场景的难点在于,如何刻画每对匹配的权重。而配送场景还需要解决,对于没有多项式时间比较好算法的情况下,如何在指数级的解空间,短时间得到优化解。如果认为每一单和每个骑手的匹配有不同的适应度,那么这个适应度并不是可线性叠加的。也就意味着多单对多人的匹配方案中,任意一种匹配都只能重新运算适应度,其计算量可想而知。外卖配送saas的前景怎么样?南京外卖配送SaaS云平台

国内saas软件的出海成功案例有吗?四川同城配送SaaS租赁

根据智能配送的这三层体系,配送算法团队也针对性地进行了运作。如上图所示,右边三个子系统分别对应这三层体系,比较低层是规划系统,中间层是定价系统,**上层是调度系统。同样非常重要的还包括图中另外四个子系统,在配送过程中做精细的数据采集、感知、预估,为优化决策提供准确的参数输入,包括机器学习系统、IoT和感知系统、LBS系统,这都是配送系统中非常重要的环节,涉及大量复杂的机器学习问题。而运筹优化则是调度系统、定价系统、规划系统的**技术四川同城配送SaaS租赁

SaaS产品展示
  • 四川同城配送SaaS租赁,SaaS
  • 四川同城配送SaaS租赁,SaaS
  • 四川同城配送SaaS租赁,SaaS
与SaaS相关的**
与SaaS相关的标签
信息来源于互联网 本站不为信息真实性负责