超声微泡相关图片
  • 重庆微流控超声微泡,超声微泡
  • 重庆微流控超声微泡,超声微泡
  • 重庆微流控超声微泡,超声微泡
超声微泡基本参数
  • 品牌
  • 星叶生物
  • 型号
  • 定制
  • 是否定制
超声微泡企业商机

超声微泡有效地产生反向散射超声,增强对比度,以便将目标部位(血管)与周围组织区分开来。它还可以比较大限度地减少噪声和背景信号。超声微泡的声学特性产生成像信号,由美国成像仪器检测。使用超声微泡进行诊断的频率范围约为2-18 MHz。共振频率与超声微泡的尺寸成反比,并受超声微泡表面配方特性的影响。超声微泡对波传播幅度的增加具有非线性响应,从而产生谐波频率分量,从而提高了美国成像的空间分辨率。超声微泡被用作造影剂,因为固体和液体颗粒无法提供超声微泡给出的后向散射信号。另一种实时无创成像技术是光声(PA)成像,它需要激光源照射、光敏剂和超声换能器来收集产生的声信号。PA成像是基于热弹性膨胀和造影剂存在下光子到超声转换的光能吸收。PA与超声波相结合,能够以高空间分辨率显示深部组织。Meng等人进行了一项简单的研究,利用超声波将mb转化为纳米颗粒,目的是在小鼠模型的PA成像过程中获得无背景的强信号。超声微泡的广泛应用使研究人员能够调整靶向效率和响应性,例如超声/光热/pH/光触发药物释放。使用超声微泡输送气体有两种方法:扩散(自发过程)和静脉注射,静脉注射通过超声波破坏气泡继续进行。重庆微流控超声微泡

重庆微流控超声微泡,超声微泡

    递送***水平的药物或***性基因递送尚未证明静脉注射与临床相关浓度的微泡。大鼠心脏基因转染使用1毫升静脉注射超声造影剂,浓度约为1×109微泡/ml。将***性基因有效递送到大鼠胰腺的方法是,在外壳内注射1毫升含有该基因的微泡,注射浓度为5×109微泡/ml。这些研究使用的剂量远远大于推荐用于人体成像的剂量。能够通过小剂量静脉注射微泡成功转染的微泡剂的开发对未来的转化非常重要研究。然而,目前尚不清楚,是由于微泡的有效载荷能力较低而需要高浓度,还是超声波应用时需要高浓度的气泡。或者,可以考虑在肌肉或动脉内注射高浓度微泡以实现局部药物或基因递送的介入性技术。在小型临床前研究中,肌内注射微泡和质粒可产生一致的局部转染。将质粒DNA和微泡共同注入肾动脉,结合瞬时血管压迫和超声,已被证明可在肾脏中产生局部基因表达。将质粒DNA和微泡共同注射到脑脊液中,再加上超声波,产生了DNA转移到大鼠***系统。Tsunoda等人表明,与通过尾静脉注射相比,向左心室局部注射微泡和质粒DNA后,报告基因转染到心脏的数量增加了一个数量级。 陕西脑靶向超声微泡超声联合纳米微泡进行核酸输送。

重庆微流控超声微泡,超声微泡

超声已被证明可以增强溶栓,超声与微泡结合使用,在溶解血栓方面比单独使用造影剂或超声更成功。**近,Unger等人开发了一种针对活化血小板的超声造影剂MRX408。该试剂使用另一种结合方法,将精氨酸甘氨酸天冬氨酸(RGD)分子直接附着在造影剂的表面。RGD与活化血小板上存在的糖蛋白IIB/IIIA受体结合。MRX408已被证明可以提高血栓的可见性,并在体外和体内更好地表征血栓的范围。超声已被证明可以增强溶栓,无论是否添加微泡,通常与静脉绐药溶栓剂结合使用。超声频率为1-2 MHz时,已证明有效溶栓并将***相关出血降至比较低。靶向微泡或游离微泡可静脉注射或直接进入血栓。超声引导溶栓***背后的机制涉及到微泡本身的机械特性。在低频和高功率下,造影剂会膨胀和收缩,并有可能使血栓破裂。此外,t-PA等溶栓剂可以被纳入气泡中,并在气泡破裂时沉积到血栓中。

载药超声微泡造影剂另一种选择是通过赋予超声微泡生物启发策略,其中天然细胞膜可以用作构建超声微泡的材料。天然细胞膜具有固有的合适特性,如生物相容性、免疫逃逸、自我识别和主动靶向特性。已有研究表明,血小板生物纳米微泡对血管损伤具有优越的靶向能力,可用于超声造影成像。另一种可用于靶向***的候选细胞是白细胞或巨噬细胞,因为它们具有可以特异性结合***斑块中VCAM-1受体的表面蛋白。为了增强细胞膜的降解,可以将超声微泡与光热剂结合,从而随着温度的升高,增加了现场降解的速度,从而提高了药物在病变部位的释放速度。超声微泡作为纳米医学,在医学领域的诊断方面具有多方面的优势。

重庆微流控超声微泡,超声微泡

超声联合纳米微泡递送RNA。YinT.等利用异源组装方法制备了携带siRNA的**纳米微泡,利用超声照射靶向SIRT2基因抗细胞凋亡。该制剂改善了siRNA-纳米微泡对基因组的沉默作用,从而***改善了*细胞的凋亡。因此,在裸啮齿动物的胶质瘤变体中观察到显着增强的***结果。YinT.等进一步研究建立了US-sensitive纳米微泡,同时携带***siRNA和紫杉醇(PTX),针对BCL-2基因***肝脏**,基于他们的研究结果。siRNA和PTX的有效递送是通过将纳米微泡注射到带有人HepG2异源瘤的裸鼠的血液循环中,并应用主动低频(低于1MHz)超声照射到肿瘤细胞的位置。在动物实验中,由于两种药物的联合抗肿瘤活性,使用低剂量的PTX可以抑制**的发展。为了***前列腺*,Wang等通过静电方法设计了携带雄***受体的纳米微泡。负载siRNA的纳米微泡与超声照射结合,极大地抑制了细胞生长,抑制了蛋白质和ARmRNA的产生。南京星叶生物研发的超声微泡造影剂是有脂质外壳包裹全氟丙烷惰性气体组成,平均尺寸约为500-700nm。陕西脑靶向超声微泡

将配体附着在微泡表面的基本方法有两种:要么通过直接共价键,要么通过生物素-亲和素连接。重庆微流控超声微泡

超声照射联合纳米微泡的生物学效应。超声给药技术是基于细胞穿孔的生物物理过程,超声结合纳米微泡和这个过程被称为超声穿孔。与其他纳米粒子相比,纳米微泡在超声能量照射下具有“塌缩”的特殊性质,导致纳米微泡内爆,改变细胞膜的通透性。当超声能量充分增加时,就会发生“超声空化”效应,即液体中的气泡(空化核)振动生长,不断地从声学场中积累能量并坍缩,直到能量达到某一阈值。超声波照射引起超声空化,导致细胞膜出现直径约300nm的空隙,稳定空化的特征是纳米气泡重复的、不坍缩的振荡,对附近细胞产生局部低应力和剪切应力,从而增加血管的通透性。此外,超声波辐照还能产生热和机械***作用。超声波辐照的生物学效应可以增加细胞膜的通透性,诱导基因转移,提高细胞内药物浓度,栓塞**,滋养血管,克服组织屏障,发挥至关重要的靶向作用。重庆微流控超声微泡

与超声微泡相关的**
与超声微泡相关的标签
信息来源于互联网 本站不为信息真实性负责