AVC滑块、OSC滑块具有特殊的重要性,因为它们直接干预焊接过程控制。AVC装置由动力滑块、测量系统和闭环调节系统组成。系统需要检测焊炬(靠近钨极处)的电弧电压,以限制线束长度产生的线路损耗影响。AVC的工作原理是基于电弧高度和产生的电压值之间的直接关系(特定电流值情况下)。在正常工作范围内(氩气保护下焊接,电流30A以上),AVC克服了所有的不规则性,确保电弧特性的恒定,从而增强了焊珠的规律性。各种相关功能有助于更精细地控制AVC滑块的反应,使其更具反应性,抑制其运动或延迟对焊缝池的影响。此外,AVC滑块的运动在焊接程序中进行编程,并与焊接电流同步。宝利苏迪内壁堆焊设备具有自动定心功能,自动实现机头旋转中心与管件中心同心,操作方便。海南自动弯管堆焊单元

宝利苏迪POLYSOUDE提供两种位置的自动氩弧堆焊设备,水平堆焊或垂直堆焊。无论是水平堆焊或垂直堆焊,宝利苏迪均可根据工件和应用特点,选择合适的工件旋转或者焊枪转动的方式,获得较好堆焊效果。无论是哪种方式,我们均能提供已获认可的自动堆焊设备和配套设备:采用水电分离器设计的氩弧堆焊机头SPX,确保无限旋转,采用宝利苏迪焊接电源控制操作机,滚轮架,变位机的一切动作,并与配套设备实现同步整合。在车间或现场预制过程中,可以进行所有位置的自动堆焊。生产过程具有100%可重复性和可追溯性。表面堆焊机器人宝利苏迪提供耐磨堆焊设备、耐腐蚀堆焊设备,防腐堆焊设备、维修堆焊设备,堆焊机器人设备。

堆焊中的熔敷率是除稀释率外另一个衡量焊接工艺性能的关键参数,反映的是金属沉积效率。焊接速度影响能量输入和焊道形状。在其他参数保持不变的情况下,焊接速度的增加会减小焊道宽度,熔池和母材之间的接界区域也会减小。另外,焊接速度的增加,会改变焊缝成型,在熔敷率恒定的情况下,熔敷层会变厚。与焊接速度一样,焊接电流影响能量输入。高电流确保熔敷率的优化。直流焊接有利于增加焊接速度和熔敷率。脉冲电流要求更适中的焊接速度。电流调节限于维持熔池和调节焊道形状。恒定能量下,脉冲电流焊接可用于增加焊道宽度。
·宝利苏迪另外一种主要的堆焊形式为垂直堆焊,例如弯头内壁堆焊,三通,法兰,阀门TIG堆焊等。为垂直位置(2G)而设计的解决方案通常是用来堆焊圆柱形部件。大多数情况下工件由转台或变位机定位,针对这些应用,POLYSOUDE宝利苏迪焊接技术设计出了一系列的无限回转焊接和堆焊机头,无限旋转机头分为上部旋转机构部分和下部焊接机构部分:旋转机构与操作架安装板连接固定不动;焊接机构部分分为焊接各项功能的执行机构,由旋转机构驱动旋转。无限旋转机头实现无限制连续焊接。宝利苏迪自动堆焊设备具备断弧,更换钨极等中断操作后的记忆功能,可在中断处继续起弧焊接。

宝利苏迪双钨极自动热丝TIG堆焊设备可用于主泵接管、管板、法兰等产品的镍基合金或不锈钢堆焊。SPX-TIGer堆焊系统能够借助焊接操作架单独使用,实现产品接管端面、表面平焊位及接管内壁横焊位置环向堆焊,也可以与焊接回转台,变位机配合实现法兰平面等产品大面积平面堆焊,实现产品局部圆弧区域及直边段立面堆焊。堆焊设备采用POLYSOUDE双钨极和单钨极热丝TIG堆焊技术,配合双钨极无限回转焊接机头,大幅度提高了堆焊的焊接效率,降低人员的劳动强度。宝利苏迪自动堆焊设备控制系统能满足焊接速度,气体流量,电弧长度,电流,摆动,弧压跟踪等的联动控制。江西热丝氩弧堆焊电源
宝利苏迪自动堆焊设备可用于接管隔离层的水平位置TIG堆焊,堆焊材料不锈钢和镍基合金。海南自动弯管堆焊单元
管道氩弧堆焊需要多层熔敷,通常是两层,但对于某些关键行业来说可能需要三层以上。在此过程中,稀释的控制非常重要。稀释率过高可能导致裂纹或组织转变(如奥氏体转马氏体)。管道氩弧堆焊遇到的主要困难是控制稀释率,以保证熔敷物的化学成分。实际上,用于堆焊的合金大多情况下只有在非稀释条件才能保证性能,这意味着需要保持与等级分类相对应的化学成分。然而,焊接操作时,填充焊丝完全熔化并沉积在母材上,母材在电弧的影响下本身也发生了熔化。堆焊操作后形成的稀释率是由填充金属和母材的混合物来定义的。在熔化*少量的母材与确保母材与熔敷层结合质量之间寻找折衷方案仍然是工艺的主要难点,需要在熔敷层的致密性和化学成分之间取得平衡。海南自动弯管堆焊单元