关键功能与创新技术实时监测与智能预警24小时连续监测关键参数(pH、溶解氧、浊度等),数据精度误差低于3%。AI算法(如自回归模型、机器学习)预测水质恶化趋势,触发阈值报警,推送至手机或管理平台。数据管理与分析支持历史数据存储、报表生成(日报/月报/年报)及跨区域对比分析。区块链技术用于数据存证,确保监测结果不可篡改,满足环保执法需求。远程控制与自动化运维通过云平台远程操控设备(如水泵、闸门),实现无人值守。模块化设计(如浮标监测站)支持快速部署与扩展。试剂消耗量低,废液产生量少。甘肃物联网传感水质监测站

随着全球气候变化的加剧以及我国碳达峰碳中和战略的实施,碳排放的监测和控制已成为我国水环境治理的重点。然而,当前我国的水环境监测体系中,碳排放水平的监测仍然是一个相对薄弱的环节。水环境中的生物地球化学作用通过碳的释放和吸纳影响大气中的温室气体浓度。对碳排放水平进行监测,能够为水环境治理和管理提供数据和理论支撑。例如,传统的污水末端处理模式在管网输送和污水处理厂处理阶段会产生大量温室气体,对这些过程加以监测和识别,可为我国污水处理系统的碳减排提供有力支撑。甘肃物联网传感水质监测站安装方便快捷、节省站房建设费用。

为满足地表水水质在线监测需求,同时解决常规水质监测站占地面积大、建设周期长等问题,赛融科技推出了智能水质在线监测系统,系统采用一体化结构设计,实现水质在线监测系统的灵活布点与安装,为地表水环境监测、管理、规划、污染防治提供有效的数据支持。这是一款集采配水、控制、监测、数据传输、辅助等多个单元为一体的一体化水质自动监测系统。它适用于河流、湖泊、水库、饮用水源地、近岸海域以及入河排污口等多种应用场景。
末端监控是指在出水口监测COD、氨氮、总磷和总氮等指标。这种监测形式能够实现实时监控,并且便于利用物联网的信息化管理手段对监测数据进行管理,能够及时发现污染指标是否超标,起到监督作用,降低对水环境、水生态的影响。然而,末端监测方式在污染防治的主动性和系统性上存在不足,难以指导污水处理厂实现优化运行。不仅可提高数据采集的效率,还能降低部署多个传感器的成本以及减少空间占用。此外,多功能传感器还能综合分析各参数间的关系,提供环境信息。同时,未来传感器需要具备实时监测与数据分析、远程控制与自动校准、多传感器协同工作与网络化等功能。利用大数据、物联网、人工智能等技术实现过程分析、预测预警及量化监管。

水质数据实时监测通过物联网传感器集成实时监控和数据传输,对多采水点水质状况进行实时监测与记录,反映水质变化。产品可形成实时线性数据,不符合标准时进行告警、为建立数据大模型及数据分析提供基础数据。多流路水质监测针对市面上水质监测产品只能监测一个监测点位的情况,赛融水质监测站可以实现多流路或多水域水质监测。通过布管,将附近几百米内的多个水质监测点的水样进行采集,用一套设备进行多点监测。既可实现对同一水域多个采水点进行监测,也可以采用同一设备监测临近多水域,有效降低监测成本。具备故障诊断功能,方便现场排查。甘肃物联网传感水质监测站
性能稳定、经济合理、运行费用低、维护工作量小;甘肃物联网传感水质监测站
我国水环境监测的数据服务功能较为单一,只侧重于提供某些特定污染物的监测数据或满足某一类环境管理需求。然而,水环境问题往往是多因素、多过程、多空间尺度交织的复杂问题,单一的监测数据或目标难以满足反映水体环境整体健康状况的需求。例如,虽然污水处理厂出水重点监测COD、氨氮等指标,但是其所含的抗性基因、菌落结构会对受纳水体的生态安全同样具有重要影响,而这些指标往往未被纳入监测范围。系统性思维则强调从整体和全局的角度进行水环境监测和管理。它要求在监测设计中考虑到水体的多功能性和复杂性,不仅要监测污染物,还要监测生态系统的各个组成部分和功能状态。此外,系统性思维还要求在监测中综合考虑空间和时间维度,既要关注水体的当前状态,还要关注其长期变化趋势以及不同区域之间的相互影响。甘肃物联网传感水质监测站
污水处理厂在应对溢流污染及生化系统运行状况监测等方面仍面临诸多挑战。溢流污染的处理是污水处理厂运营中的一大难题,往往在暴雨等极端天气下,污水流量骤增,超出污水处理厂的处理能力,致使未经充分处理的污水直接排放至环境中,对水体造成严重污染。针对此问题,污水处理厂需加强预警机制建设,通过实时监测与数据分析,提前预判溢流风险,并采取有效措施予以应对,如增设调蓄池、优化排水管网布局等。同时,生化系统运行状况监测是污水处理厂运营管理的关键环节。生化处理作为关键工艺,其运行效率与稳定性直接影响出水水质。然而,由于生化系统复杂多变,易受进水水质、温度、pH值等多种因素的影响,监测难度大、调控不及时。因此,污水...