褐藻寡糖对烟C叶片叶绿素含量的影响叶绿素是高等植物进行光合作用的主要成分,叶绿素损失或者破坏会严重影响植物生长发育进程,在某种程度上叶绿素含量多少表征着植物健康程度。图3和图4是烟C叶片中叶绿素a和叶绿素b在喷施褐藻寡糖后的变化结果。研究发现:经过6h低温胁迫,水处理组叶绿素a和b含量分别下降了23.9%和6.0%,随着时间延长,2种叶绿素含量继续减少,48h后分别只有对照的51.2%和78.3%,说明在低温胁迫下,水处理组叶绿素受到低温损伤破坏,且随着时间延长,破坏不断加剧。在2种叶绿素中,叶绿素a比叶绿素b更容易受到低温破坏。喷施了0.05%~0.30%褐藻寡糖后进行低温胁迫,烟C叶片叶绿素a和b含量比水处理组有不同程度升高,表明此浓度范围内寡糖能够减轻低温对叶绿素的损伤,其中以0.20%寡糖溶液效果明显,但0.10%褐藻寡糖处理组在48h时叶绿素a和b的含量都有较大幅度下降,表明叶绿素受到破坏损伤;高浓度1.00%褐藻寡糖对烟C起破坏作用,与对照组相比,叶绿素a和b含量都有较大幅度减少,随时间延长,二者含量继续降低,表明烟C叶绿素损伤加剧。褐藻寡糖在植物诱导抗病中有重要作用,因为褐藻寡糖激发植物体内相关抗病信号通路,从而引起植物抗病。广西壳寡糖vs褐藻寡糖
褐藻胶寡糖对植物来说也是一种重要的信号分子,能够参与植物的生长调节和诱导抗病过程。研究发现,褐藻寡糖对植物具有促生长作用。Guyen等2000年发现,利用γ-射线照射褐藻胶得到降解组分,分子量小于104Da的褐藻胶降解产物的混合物显示出对水稻和花生的促生长作用,适当控制混合物浓度可提高作用效果。Natsume等(1994)报道酶解褐藻胶获得的降解产物对多种植物具有延长生命周期的作用;进一步研究发现酶解产物中分离得到的三糖(M或G)具有明显的促大麦根生长活性(Quocetal.,2000);Tomoda等(1994)则报道了聚合度为4的褐藻胶寡糖(M或G)对大麦根促生长作用明显。Iwasaki&Matsubara等(2000b)对酶解褐藻胶寡糖对莴苣的促根生长活性研究表明,聚合度为2-8糖的混合物在浓度200-3000ug/ml的范围内使莴苣根生长长度为空白组的2倍;利用凝胶色谱等方法分离各种聚合度的寡糖,发现三糖、四糖、五糖及六糖(M或G)具有很高的促根生长活性。褐藻寡糖能够作为信号调节分子作用于植物,促进植物的生长,此领域的研究为海洋活性寡糖的开发开辟了新的途径。 北京褐藻寡糖褐藻寡糖为从海洋生物中提取的生物多糖,使用时无需安全间隔区。
前寡糖在植物促生长与诱导抗逆领域研究的现状,本研究选择不同来 源、不同分子量大小的褐藻寡糖、果胶寡糖和壳寡糖的寡糖片段,通过促生长与 抗逆作用对其生物活性进行比对筛选。以促进植物种子萌发和幼苗生长作为寡糖 片段的促生长指标,以大豆子叶法测定诱导产生植保素的合成作为寡糖片段的抗 逆指标,对寡糖种类、分子量水平和浓度大小与促生长和抗逆效应的影响进行研 究,以获得具有优良的促生长与抗逆性能的寡糖片段。褐藻寡糖 HZ3 在浓度为 0.1%时对豌豆促生长效果为明显,能够明显的促进豌 豆根和芽的生长,增加根和芽的干重。
AOS增强植株对致病疫霉的抗性用100μg/mLAOS分别喷施拟南芥和本氏烟,24h后,接种致病疫霉。结果显示与喷施ddH2O的植株相比,AOS处理的叶片接种部位的水渍及叶片的黄化程度明显降低,检测致病疫霉菌丝的生长量也明显低于对照,表明AOS也可以增强植株对致病疫霉的抗性。AOS诱导植物早期免疫应答反应对喷施AOS和ddH2O的本氏烟叶片进行相关免疫反应的检测。结果显示,在气孔开度方面,与ddH2O处理的对照组相比,AOS处理的本氏烟叶片的气孔开度明显较低,表明AOS通过调节叶片表面气孔的开合抑制病原菌的入侵。分别于2h、4h、8h、24h和48h时,对喷施AOS和ddH2O的本氏烟叶片进行DAB和NBT组织化学染色,发现喷施ddH2O的叶片染色程度较浅,而喷施AOS的叶片染色程度较深,且在24h时染色深。qRT-PCR检测ROS合成基因RbohA、RbohB以及去除基因SOD、APX和CAT表达水平,显示RbohB基因表达量明显上调,CAT基因表达量明显下降,说明AOS可以通过抑制CAT基因和促进RbohB基因的表达,提高过氧化氢的积累。褐藻寡糖是由褐藻中的褐藻胶通过氧化降解、酸水解或者裂合酶降解而得到的小分子量片段。
AOS促进植物体内胼胝质的沉积对喷施AOS和ddH2O的拟南芥叶片进行苯胺蓝染色,结果显示,AOS处理的叶片叶脉处有明显的荧光现象,说明AOS可以促进胼胝质的积累,抵抗病原菌的入侵。AOS激发SA信号通路对AOS和ddH2O处理后的本氏烟叶片进行液相色谱测定,结果显示,AOS处理的叶片中SA的含量相对较高;接种PVX后,叶片中的SA的合成进一步增加。同时,利用qRT-PCR检测了AOS处理后SA合成途径中的两个关键基因ICS和PAL的表达水平,结果表明ICS基因的表达水平明显高于对照,而PAL基因的表达水平与对照相比并无明显差别,说明AOS主要通过ICS途径诱导SA的合成。利用qRT-PCR技术检测SA信号通路中的标志基因的表达水平,发现NPR1、PR1a的表达水平明显提高。上述结果说明,AOS可以促进SA的积累,并激发SA信号通路。褐藻寡糖宜存于阴凉干燥处,运输过程中避免雨淋、挤压、碰撞。天津褐藻寡糖妇科
褐藻寡糖能够作为信号调节分子作用于植物,促进植物的生长,此研究为海洋活性寡糖的开发开辟了新的途径。广西壳寡糖vs褐藻寡糖
褐藻寡糖对黄瓜幼苗生长指标的影响黄瓜幼苗经不同分子量的褐藻寡糖处理,处理14d后,在外观形态方面,ADO2和ADO3处理过的黄瓜幼苗与对照组相比有明显差别,ADO2和ADO3处理过的幼苗长势明显好于对照组,经不同分子量的ADO处理的黄瓜幼苗的生长状况均好于对照组,各种生长指标包括株高、茎粗、株幅及鲜重都明显高于对照。ADO1,ADO2,ADO3,ADO4处理植株的株高分别提高了%,%,%和8%,茎粗分别提高了5.8%,23.9%,22.7%和7.0%,株幅分别提高了21.9%,27.0%,35.4%和24.3%,鲜重分别提高了50.8%,53.5%,74.3%和54.1%。其中ADO2和ADO3处理组黄瓜幼苗的各项生长指标都高于ADO1和ADO4处理组。因此,选择ADO2和ADO3进行后续试验。褐藻寡糖对黄瓜叶片叶绿素含量的影响由图3所示,经过ADO处理的黄瓜叶片中的叶绿素a和叶绿素总含量均比蒸馏水处理的对照有明显性提高,ADO处理组组间比较发现,ADO3对叶绿素含量的提高比ADO2更为明显。2种褐藻寡糖对叶绿素a的含量的影响较大,叶绿素b的含量变化相对较小,而光合作用与叶绿素a的含量关系相对密切。 广西壳寡糖vs褐藻寡糖
青岛颂田生物技术有限公司致力于农业,以科技创新实现高质量管理的追求。公司自创立以来,投身于壳寡糖,海藻精,鱼蛋白,褐藻寡糖,是农业的主力军。颂田生物致力于把技术上的创新展现成对用户产品上的贴心,为用户带来良好体验。颂田生物始终关注农业市场,以敏锐的市场洞察力,实现与客户的成长共赢。