粉体处理方面,陶瓷旋转膜同样优势明显。以球形氧化硅、球形氧化铝生产为例,化学合成反应后的溶胶或纳米颗粒悬浮于液相中形成高分散性浆料。碟式陶瓷膜可将浆料比较高浓缩至固含量 65% - 70%,极大节约了洗水量和能耗。在湿法分级或表面修饰形成的浆料处理中,经碟式陶瓷膜浓缩后,高浓度浆料在后期干燥中明显节能,节水量至少可达 50% 以上,且浆料... 【查看详情】
对于化工行业中高分子材料的溶液过滤,旋转膜系统与碟式陶瓷膜提供了高效、稳定的处理方案。高分子材料溶液(如聚乙烯醇溶液、聚丙烯腈溶液)在加工前需去除凝胶颗粒、未溶解的原料杂质,传统过滤设备(如袋式过滤器)易堵塞,需频繁更换滤袋,影响生产连续性。旋转膜系统的高速旋转(转速300-1000rpm)产生的湍流,能有效防止凝胶颗粒在膜面... 【查看详情】
在高浓度、高黏度(高浓粘)物料的分离浓缩领域,传统过滤技术常因通量衰减快、易堵塞、能耗高等问题受限,而旋转陶瓷膜动态错流技术凭借其独特的抗污染机制和材料特性,成为该类复杂体系的高效解决方案。以下从应用场景、技术优势、典型案例及关键技术要点展开分析: 一、高浓粘物料的特性与分离难点 1.物料特性 高浓度:固相含量通常≥... 【查看详情】
目前,碟式陶瓷膜市场竞争格局呈现多元化态势。国际上,德国、美国、日本等国家的企业凭借先进技术与品牌优势,占据较多市场份额,如德国某企业在生物医药、电子超纯水领域的碟式陶瓷膜市场占有率达 30% 以上,其产品具备极高的分离精度与稳定性。国内企业近年来发展迅速,依托本土市场优势与成本优势,在市政污水、食品工业等领域占据一定份额,部分企业通过技... 【查看详情】
在粉体处理方面,陶瓷旋转膜同样优势明显。 以球形氧化硅、球形氧化铝生产为例,化学合成反应后的溶胶或纳米颗粒悬浮于液相中形成高分散性浆料。碟式陶瓷膜可将浆料比较高浓缩至固含量 65% - 70%,极大节约了洗水量和能耗。在湿法分级或表面修饰形成的浆料处理中,经碟式陶瓷膜浓缩后,高浓度浆料在后期干燥中明显节能,节水量至少可达 50%... 【查看详情】
目前,碟式陶瓷膜市场竞争格局呈现多元化态势。国际上,德国、美国、日本等国家的企业凭借先进技术与品牌优势,占据较多市场份额,如德国某企业在生物医药、电子超纯水领域的碟式陶瓷膜市场占有率达 30% 以上,其产品具备极高的分离精度与稳定性。国内企业近年来发展迅速,依托本土市场优势与成本优势,在市政污水、食品工业等领域占据一定份额,部分企业通过技... 【查看详情】
技术原理与关键机制 动态错流与剪切力膜片旋转时,表面产生高速流体剪切力(可达传统静态膜的3-5倍),这种剪切力能够持续冲刷膜表面,有效防止颗粒、胶体及大分子物质的沉积,明显缓解浓差极化现象。 例如,在处理高粘度油脂或发酵液时,旋转产生的湍流可使膜通量提升30%-50%,连续稳定过滤时间延长数倍。离心力辅助分离旋转运动产生的... 【查看详情】
在化工行业的含胺废水处理中,旋转膜系统与碟式陶瓷膜实现了胺类物质回收与废水净化。含胺废水(如乙二胺生产废水)中胺浓度可达 500-1500mg/L,传统酸化处理易产生盐类物质,污染环境。旋转膜系统先去除废水中的固体杂质(去除率>99.5%);碟式陶瓷膜耐酸碱(pH 2-12),对乙二胺截留率达 90% 以上,透过液胺浓度降至 50mg/L... 【查看详情】
初期投资成本较高曾是制约碟式陶瓷膜大规模推广的因素之一,但随着产业规模扩大与技术进步,成本呈下降趋势。一方面,规模化生产使得原材料采购成本降低,生产效率提升,单位膜组件的制造成本下降 15%-20%;另一方面,技术创新带来的膜性能提升,如通量增加、使用寿命延长,分摊到单位处理量上的成本也随之降低。例如,新一代碟式陶瓷膜通量较前代提升 30... 【查看详情】
碟式陶瓷膜的组件设计直接影响其运行效率与维护便利性。典型的膜组件由碟膜片、中心导流管、外壳、进出水口组成。碟膜片采用双面镀膜设计,表面布满均匀的导流沟槽,既增大比表面积(比管式陶瓷膜高 30%-50%),又能引导流体均匀流动,减少死体积。中心导流管负责收集透过液,管壁开设与碟膜片对应的过流孔,确保透过液快速导出,降低浓差极化。外壳采用不锈... 【查看详情】
从设备构成来看,陶瓷旋转膜过滤装置通常包括料液罐、旋转膜组、驱动结构等部分。 旋转膜组由壳体、空心转动轴和具有夹层的过滤膜片组成。转动轴分为壳体内的收液部和壳体外的出液部,二者内部空间连通。过滤膜片安装在收液部上,其夹层与收液部相连。出液部连接转动驱动结构,并设有清液出口,壳体上设有进液口和浓液出口,进液口通过供料泵与料液罐连通... 【查看详情】