采摘机器人的“眼睛”是技术突破的重点。早期系统受限于光照变化和枝叶遮挡,误判率居高不下。如今,采用融合3D视觉与近红外光谱的摄像头,能穿透部分树叶层,构建果实三维点云模型。算法层面,卷积神经网络通过数十万张果园图像训练,不仅能识别不同苹果品种的色泽特征(如富士的条纹红与青苹的均匀青绿),还能结合果实...
内置温湿度传感器,可根据环境条件调整采摘策略。智能采摘机器人内置的温湿度传感器能够实时监测果园内的环境温湿度数据。不同的作物对采摘时的温湿度条件有不同的要求,例如,高温干燥环境下,一些果实的表皮会变得脆弱,容易在采摘过程中受损;而在高湿度环境下,果实可能会因表面水分过多而影响储存和品质。当温湿度传感器检测到环境参数发生变化时,机器人会自动将数据传输至控制系统,控制系统结合预先设定的作物特性和温湿度阈值,调整采摘策略。在高温时,机器人可能会降低采摘速度,增加抓取力度的缓冲,以避免果实因高温下的脆弱性而受损;在高湿度环境下,可能会优先选择通风良好的区域进行采摘,并对采摘后的果实进行快速处理和干燥。通过这种根据环境条件实时调整采摘策略的方式,智能采摘机器人能够更好地适应不同的环境状况,保障采摘果实的质量。南京熙岳智能科技有限公司成立于 2017 年,在智能采摘机器人研发方面成果。北京什么是智能采摘机器人优势
柔性机械臂模拟人类采摘动作,轻柔摘取果实避免损伤。柔性机械臂是智能采摘机器人实现精细作业的关键部件,它借鉴了人体手臂的结构和运动原理,采用柔性材料和特殊的驱动方式。机械臂的关节部分具有多个自由度,能够像人类手臂一样灵活弯曲和伸展,模仿人类采摘时的伸手、抓取、扭转等动作。在抓取果实时,机械臂内置的压力传感器会实时感知抓取力度,并根据果实的种类、大小和成熟度自动调整力度,确保在抓取牢固的同时不会对果实表皮造成挤压、划伤等损伤。例如,对于娇嫩的葡萄,机械臂会以极轻柔的力度包裹抓取;对于苹果等相对坚硬的果实,力度也会控制。这种模拟人类采摘动作的柔性机械臂,不提高了采摘的成功率,还能有效保护果实品质,减少因损伤导致的果实腐烂和经济损失。天津自动化智能采摘机器人产品介绍机器人的果实采收功能突出,这是熙岳智能技术优势的有力证明。

智能采摘机器人可通过 VR 技术进行远程虚拟操控。智能采摘机器人的 VR 远程操控系统由头戴式 VR 设备、动作捕捉手套和机器人端的信号接收装置组成。操作人员佩戴 VR 设备后,可实时获得机器人摄像头采集的 360° 全景画面,仿佛身临其境般置身于果园现场。动作捕捉手套能够捕捉操作人员的手部动作,并将动作信号传输至机器人,控制机械臂的运动。当机器人遇到复杂情况,如果实位置特殊难以自动采摘时,操作人员可通过 VR 技术进行远程虚拟操控,手动调整机械臂的角度和抓取动作。在国外的葡萄园中,技术人员在千里之外的办公室,通过 VR 技术操控机器人完成了高难度的葡萄采摘任务,解决了因地形复杂或环境危险导致机器人无法自主作业的问题。VR 远程操控技术不提高了机器人应对复杂情况的能力,还降低了人工现场操作的成本和风险。
采用节能电机,降低机器人运行过程中的能耗。节能电机采用先进的永磁同步电机技术与矢量控制算法,通过优化电机磁路结构和绕组设计,使电能转化为机械能的效率提升至 95% 以上。以常见的果园采摘场景为例,传统电机驱动的机器人每小时耗电量约 5 千瓦时,而搭载节能电机的智能采摘机器人可将能耗降低至 3 千瓦时以内。同时,电机具备动态功率调节功能,在空载移动、抓取等不同作业状态下,能自动匹配功率输出。结合能量回收技术,机器人在减速或机械臂下降过程中产生的动能可转化为电能重新储存,进一步降低整体能耗。这种能耗优化不减少了果园的用电成本,还延长了机器人的续航时间,使其在单次充电后可连续作业 8 至 10 小时,提升设备利用率。按照作物商品性特点,熙岳智能的采摘机器人采用按串采收方式,提高采摘质量。

机械臂末端的吸盘装置可高效抓取圆形果实。智能采摘机器人机械臂末端的吸盘装置采用气动负压原理,由硅胶吸盘、真空发生器和压力调节系统组成。硅胶吸盘具有良好的柔韧性和密封性,能够紧密贴合圆形果实表面,如苹果、柑橘、番茄等。当机械臂对准果实后,真空发生器迅速启动,在 0.2 秒内将吸盘内的空气抽出,形成负压,将果实牢牢吸附。压力调节系统实时监测吸盘内的压力值,根据果实的大小和重量自动调整负压强度,确保抓取稳定且不会损伤果实。对于表面不平整的果实,吸盘边缘的波纹设计可增强密封效果。在实际作业中,吸盘装置每小时可完成 1500 - 2000 次抓取动作,抓取成功率达 98% 以上,且对果实表皮无任何损伤,极大地提高了圆形果实的采摘效率和品质。熙岳智能的智能采摘机器人,可利用人工智能自动识别果实成熟度,极大提升采摘效率。天津自动化智能采摘机器人产品介绍
利用熙岳智能的技术,机器人能够对环境进行障碍物探测并进行 SLAM 建图。北京什么是智能采摘机器人优势
可根据果实生长高度自动调节机械臂升降。智能采摘机器人的机械臂升降系统集成了激光测距传感器、倾角传感器和伺服电机驱动装置。激光测距传感器实时扫描果实与机械臂末端的垂直距离,当检测到果实生长位置变化时,将数据传输至控制系统。控制系统结合预先设定的果实高度范围,通过伺服电机精确调节机械臂各关节的角度,实现机械臂的自动升降。在柑橘园中,不同树龄的柑橘树果实生长高度差异较大,从 1 米到 3 米不等,机器人可在 0.5 秒内完成机械臂高度的调整,确保末端执行器始终处于采摘位置。此外,该系统还具备防碰撞功能,当机械臂在升降过程中检测到障碍物时,会立即停止运动并重新规划路径,避免损坏机械臂和果实。通过自动调节机械臂升降,智能采摘机器人能够适应不同高度的果实采摘需求,提高作业的灵活性和效率。北京什么是智能采摘机器人优势
采摘机器人的“眼睛”是技术突破的重点。早期系统受限于光照变化和枝叶遮挡,误判率居高不下。如今,采用融合3D视觉与近红外光谱的摄像头,能穿透部分树叶层,构建果实三维点云模型。算法层面,卷积神经网络通过数十万张果园图像训练,不仅能识别不同苹果品种的色泽特征(如富士的条纹红与青苹的均匀青绿),还能结合果实...
河南草莓智能采摘机器人
2026-01-08
海南荔枝智能采摘机器人品牌
2026-01-08
广东AI智能采摘机器人功能
2026-01-08
湖北ccd视觉检测设备
2026-01-07
天津制造智能采摘机器人价格
2026-01-07
自动智能采摘机器人用途
2026-01-07
北京智能智能采摘机器人性能
2026-01-07
江西自制智能采摘机器人定制价格
2026-01-07
天津节能智能采摘机器人定制价格
2026-01-07