天线设计生要依靠一些***的数学方法和计算机关心设计 [CAD]。**的方法是有限差分时域法(FDTD),这种方法允许辐射构造为任意外形并由多层不同材料构成。对于基站天线,通常分为定向天线和全向天线,在HF,VHF 频段的基站天线及 UHF 频段的全向天线均属线型构造天线,通常用矩量法分析设计;UHF 以上的定向天线大多承受线形振子或贴层鼓励的平板式构造,可以用矩量法和几何绕射理论(GTD 混合法)分析计算,但实际上这类平板型天线完全可以用HP 和 Ansoft 公司推出的 HFSS 软件仿真。借助于设计阅历或简洁理论分析HFSS 很简洁求得这类天线的单元电气特性,利用天线原理的组阵方法可以推得**正确设计结果。天线的天线阻抗匹配可以通过天线调谐器来实现。西安测试设备天线测试设备
所谓的输入阻抗,指的是在馈电端所呈现出来的阻抗,这个阻抗的值是馈电电流和馈电电压之间的比值。通常来说,这个比值是一个复数。我们把这个复数的实数看做是输入电阻,虚数部分看做电抗。当天线回路出现匹配或者协调问题的时候,我们就必须了解输出电阻和输入电抗的值,所以输入阻抗是一个重要参数。在无线电通信系统中,影响输入阻抗的主要因素是天线的具体构造和天线的工作频率多少,另外天线的工作环境等相关因素也会对输入阻抗有所影响。所以,我们在实际的安装过程中,对天线的尺寸与形状都要有严格的要求要选择合理构造的天线。华强北工作电流天线校准天线的设计和形状会影响其接收或发送信号的效果。
无线天线可分为全向天线、定向天线、扇形天线、平板天线等类型。其中全向天线适在各无线接点距离较近、需要覆盖较多数量无线设备及客户端的场合,但这些设备的增益大多较小,信号传递距离较短。定向天线包括八木定向天线、角型定向天线、抛物面定向天线等品种,适在各无线接点位置距离很远,并且无线接入点集中、数量较少且位置固定的环境。这种天线具有信号传递距离长、能量汇聚能力强的特点。扇形天线可以多角度的覆盖,如果无线接入点集中在该天线的覆盖范围内,可考虑选购此类天线,它具有能量定向和汇聚功能。平板天线的角度范围可分为30度和15度,比扇形天线的信号覆盖范围小,但它的能量汇聚能力更强,可用在无线接入点相对较远、更为集中的环境。
无线电发射机输出的射频信号功率,通过馈线(电缆)输送到天线,由天线以电磁波形式辐射出去。电磁波到达接收地点后,由天线接下来(**接收很小一部分功率),并通过馈线送到无线电接收机。可见,天线是发射和接收电磁波的一个重要的无线电设备,没有天线也就没有无线电通信。天线品种繁多,以供不同频率、不同用途、不同场合、不同要求等不同情况下使用。对于众多品种的天线,进行适当的分类是必要的:按用途分类,可分为通信天线、电视天线、雷达天线等;按工作频段分类,可分为短波天线、超短波天线、微波天线等;按方向性分类,可分为全向天线、定向天线等:按外形分类,可分为线状天线、面状天线等;等等分类。天线的安装位置和方向对信号接收或发送的质量有重要影响。
垂直极化波要用具有垂直极化特性的天线来接收,水平极化波要用具有水平极化特性的天线来接收。右旋圆极化波要用具有右旋圆极化特性的天线来接收,而左旋圆极化波要用具有左旋圆极化特性的天线来接收。当来波的极化方向与接收天线的极化方向不一致时,接收到的信号都会变小,也就是说,发生极化损失。例如:当用+45°极化天线接收垂直极化或水平极化波时,或者,当用垂直极化天线接收+45°极化或-45°极化波时,等等情况下,都要产生极化损失。用圆极化天线接收任**极化波,或者,用线极化天线接收任一圆极化波,等等情况下,也必然发生极化损失------只能接收到来波的一半能量。当接收天线的极化方向与来波的极化方向完全正交时,例如用水平极化的接收天线接收垂直极化的来波,或用右旋圆极化的接收天线接收左旋圆极化的来波时,天线就完全接收不到来波的能量,这种情况下极化损失为比较大,称极化完全隔离。 天线可以用于卫星通信、雷达系统等领域。广东GPS101天线导航
天线的天线损耗是指天线在信号传输过程中的能量损失。西安测试设备天线测试设备
在移动无线电环境中信号衰落会产生严重问题。随着移动台的移动,瑞利衰落随信号瞬时值快速变动,而对数正态衰落随信号平均值(中值)变动。这两者是构成移动通信接收信号不稳定的主要因素,它使接收信号**地恶化了。虽然通过增加发信功率、天线尺寸和高度等方法能取得改善,但采用这些方法在移动通信中比较昂贵,有时也显得不切实际:而采用分集方法即在若干个支路上接收相互间相关性很小的载有同一消息的信号,然后通过合并技术再将各个支路信号合并输出,那么便可在接收终端上**降低深衰落的概率。通常在接收站址使用分集技术,因为接收设备是无源设备,所以不会产生任何干扰。分集的形式可分为两类,一是显分集,二是隐分集。下面*讨论显分集,它又可以分为基站显分集与一般显分集两类。 西安测试设备天线测试设备