光刻胶基本参数
  • 品牌
  • 蔚云
  • 型号
  • 25KG/桶
光刻胶企业商机

1999年,美国3M公司Kessel等率先制备了侧基含硅的高分子光刻胶PRB和PRC。他们利用含硅的酸敏基团代替t-Boc基团,构建了正性化学放大光刻胶体系。在EUV光下,PRC可在≤10mJ·cm−2的剂量下获得0.10μm的光刻图案。2002年起,Ober课题组合成了一系列侧基带有含硅基团和含硼基团的共聚物。两类光刻胶除了满足光刻胶应用的基本理化条件之外,都具有较高的EUV透光性,以及对氧等离子体的抗刻蚀性。其中含硅的光刻胶可获得线宽180nm、占空比1∶1的密集线条,且具有较高的对比度,抗刻蚀性与酚醛树脂相当;而含硼高分子的光刻性能还有待于进一步优化。此后,Ober课题组还报道了一种使用开环异位聚合(ROMP)制备的含硅高分子,此类光刻胶对EUV透光度较高,但由于含硅基团的存在,他们在TMAH中的溶解性较差,因此需要在显影液中加入30%的异丙醇,可得到150nm的光刻线条。光刻胶达到下游客户要求的技术指标后,还需要进行较长时间验证测试(1-3 年)。普陀LCD触摸屏用光刻胶显示面板材料

2010年,美国英特尔公司的Masson报道了一种含有Co的聚合物光刻胶,由Co2(CO)8与高分子链中的炔烃部分络合反应生成。EUV曝光后,在光酸的作用下发生高分子断链反应,溶解度发生变化,可形成30nm的光刻线条,具有较高的灵敏度,但LER较差。2014年,课题组报道了一种铋化合物,并将其用于极紫外光刻。这种由氯原子或酯键配合的铋寡聚物可在EUV光照后发生分子间交联反应。不过尽管铋的EUV吸收能力很强,但此类配合物的灵敏度并不高,氯配合铋寡聚物能实现分辨率21nm,所需剂量高达120mJ·cm−2。浦东半导体光刻胶光引发剂光刻胶发展至今已有百年历史,现已用于集成电路、显示、PCB 等领域,是光刻工艺的重要材料。

尽管HSQ可以实现较好的EUV光刻图案,且具有较高的抗刻蚀性能,但HSQ较低的灵敏度无法满足EUV光刻的需求,且价格非常昂贵,难以用于商用的EUV光刻工艺中。另外,尽管HSQ中Si含量很高,但由于O含量也很高,所以HSQ并未展现含Si光刻胶对EUV光透光性的优势,未能呈现较高的对比度。因此,研发人员将目光转向侧基修饰的高分子光刻胶。使用含硅、含硼单元代替高分子光刻胶原本的功能性含氧侧基,既可有效降低光刻胶对EUV光的吸收,又有助于提高对比度,也可提高抗刻蚀性。

光刻胶的两大主要研究小组:杨国强课题组和李嫕课题组,分别设计并制备了双酚A型和螺双芴型的单分子树脂化学放大光刻胶,前者可通过调节离去基团的数量来改变光刻胶的灵敏度,后者则通过螺双芴结构降低材料的结晶性,提高了成膜性性能。两种光刻胶都可以实现小于25nm线宽的光刻线条。随后,杨国强课题组还报道了一种可作为负性光刻胶的双酚A单分子树脂光刻胶,该分子中具有未经保护的酚羟基,在光酸的作用下可以与交联剂四甲氧基甲基甘脲反应形成交联网状结构,从而无法被碱性显影液洗脱,可在电子束光刻下实现80nm以下的线条,在EUV光刻中有潜在的应用。此外,两个课题组还分别就两个系列光刻胶的产气情况开展研究。光刻胶市场 ArF 与 KrF 占据主流,EUV 增长较快。

构建负胶除了可通过改变小分子本身的溶解性以外,还可以利用可发生交联反应的酸敏基团实现分子间的交联,从而改变溶解度。Henderson课题组报道了一系列含有环氧乙烷基团的枝状单分子树脂。环氧乙烷基团在酸的作用下发生开环反应再彼此连接,从而可形成交联网状结构,使光刻胶膜的溶解性能降低,可作为负性化学放大光刻胶。通过增加体系内的芳香结构来进一步破坏分子的平面性,可以获得更好的成膜性和提高玻璃化转变温度;同时,每个分子上的环氧基团从两个增加为四个后,灵敏度提高了,分辨率也有所提高。光刻胶又称光致抗蚀剂,是一种对光敏感的混合液体。江浙沪黑色光刻胶曝光

按照化学结构分类:光刻胶可以分为光聚合型,光分解型,光交联型和化学放大型。普陀LCD触摸屏用光刻胶显示面板材料

在Shirota等的工作基础之上,2005年起,美国康奈尔大学的Ober课题组将非平面树枝状连接酸敏基团的策略进一步发展,设计并合成了一系列用于EUV光刻的单分子树脂光刻胶,这些光刻胶分子不再局限于三苯基取代主要,具有更复杂的枝状拓扑结构。三级碳原子的引入使其更不易形成晶体,有助于成膜性能的提高;更复杂的拓扑结构,也便于在分子中设置数量不同的酸敏基团,有利于调节光刻胶的灵敏度。他们研究了后烘温度、显影剂浓度等过程对单分子树脂材料膨胀行为的影响,获得20nm分辨率的EUV光刻线条,另外,他们也研究了利用超临界CO2作为显影剂的可能性。普陀LCD触摸屏用光刻胶显示面板材料

与光刻胶相关的文章
与光刻胶相关的产品
与光刻胶相关的资讯
与光刻胶相关的**
与光刻胶相关的标签
产品推荐
相关资讯
信息来源于互联网 本站不为信息真实性负责