企业商机
立式炉基本参数
  • 品牌
  • 赛瑞达
  • 型号
  • 通用
立式炉企业商机

立式炉的工作原理主要基于热传递过程。燃料在燃烧器中燃烧,产生高温火焰和烟气,这些高温介质将热量以辐射和对流的方式传递给炉膛内的炉管或物料。对于有炉管的立式炉,物料在炉管内流动,通过炉管管壁吸收热量,实现升温;对于直接加热物料的立式炉,物料直接暴露在炉膛内,吸收高温烟气和火焰的热量。在热传递过程中,通过合理控制燃烧器的燃料供应、空气量以及炉膛的通风情况等参数,能够精确调节炉膛内的温度,满足不同物料和工艺的加热需求。立式炉温度精确调控,确保工艺稳定进行。南通立式炉氧化炉

南通立式炉氧化炉,立式炉

化学气相沉积(CVD)是立式炉的又一重要应用领域。在炉管内通入反应气体,高温条件促使反应气体在晶圆表面发生化学反应,进而沉积形成薄膜。早期,多晶硅、氮化硅、二氧化硅等关键薄膜的沉积常常借助立式炉完成。即便在当下,部分被单片式 CVD 取代,但在对薄膜均匀性要求极高、需要大批量沉积特定薄膜,如厚氧化层时,立式炉 CVD 凭借其均匀性优势,在半导体制造中依旧占据重要地位。立式炉的立式结构有助于气体在炉管内均匀流动,使反应气体能够均匀接触晶圆表面,从而在晶圆上沉积出厚度均匀、质量稳定的薄膜,满足半导体制造对薄膜高质量的严格要求。南通立式炉氧化炉精确的温度传感器,助力立式炉控温。

南通立式炉氧化炉,立式炉

精细控温对立式炉的性能起着决定性作用。以某品牌立式炉为例,其搭载智能 PID 温控系统,温度波动比较低可小于 0.5 摄氏度,在氧化工艺中,能够将氧化膜厚度误差控制在小于 2%,确保每一片晶圆都能接受高度一致且精细的热处理,满足半导体制造对工艺精度的极高要求,提升产品稳定性与可靠性。这种高精度的控温能力在其他半导体工艺中同样发挥关键作用,如扩散工艺中对掺杂浓度分布的控制、化学气相沉积中对薄膜生长速率和质量的控制等。通过精细控温,立式炉能够保障半导体制造工艺的稳定性和重复性,为大规模生产高质量半导体器件奠定坚实基础。

立式炉主要适用于6"、8"、12"晶圆的氧化、合金、退火等工艺。氧化是在中高温下通入特定气体(O2/H2/DCE),在硅片表面发生氧化反应,生成二氧化硅薄膜的一种工艺。生成的二氧化硅薄膜可以作为集成电路器件前道的缓冲介质层和栅氧化层等。退火是在中低温条件下,通入惰性气体(N2),消除硅片界面处晶格缺陷和晶格损伤,优化硅片界面质量的一种工艺。立式炉通过电加热器或其他加热元件对炉膛内的物料进行加热。由于炉膛管道垂直放置,热量在炉膛内上升过程中能够得到更均匀的分布,有助于提高加热效率和温度均匀性‌。立式炉采用垂直设计,占地面积小,适合空间有限的工厂环境。

南通立式炉氧化炉,立式炉

立式炉的温度控制是确保生产工艺稳定和产品质量的关键。通常采用先进的自动化控制系统,结合高精度的温度传感器。传感器实时监测炉内不同位置的温度,并将信号反馈给控制器。控制器运用PID控制算法,根据预设的温度曲线,自动调节燃烧器的燃料供应量和空气流量。在升温阶段,快速增加燃料和空气,使炉温迅速上升;在保温阶段,精确控制燃料和空气的比例,维持炉温稳定;在降温阶段,逐渐减少燃料供应,实现平稳降温。一些高级立式炉还具备多段温度控制功能,可根据物料在不同加热阶段的需求,灵活调整炉内各区域的温度,满足复杂工艺的要求。立式炉的多层设计可同时处理多片晶圆,提升生产效率。济南立式炉BCL3扩散炉

立式炉在金属热处理中用于退火、淬火和回火等工艺。南通立式炉氧化炉

扩散工序是赋予半导体材料特定电学性能的重要环节,立式炉在此发挥着关键作用。其内部独特的气流循环系统,能使掺杂气体均匀地扩散至晶圆内部。在实际生产中,无论是对硅基半导体进行硼、磷等元素的掺杂,还是针对化合物半导体的特殊元素扩散,立式炉都能精确把控。例如,在制造高性能的功率半导体器件时,对立式炉扩散工艺的精确控制,可优化器件的导通电阻、击穿电压等关键参数,提升器件的整体性能与可靠性。如果您在半导体扩散工艺上遇到挑战,我们专业的立式炉设备及技术团队,将为您量身定制解决方案,助力您突破技术瓶颈,赶快联系我们吧。南通立式炉氧化炉

立式炉产品展示
  • 南通立式炉氧化炉,立式炉
  • 南通立式炉氧化炉,立式炉
  • 南通立式炉氧化炉,立式炉
与立式炉相关的文章
与立式炉相关的**
与立式炉相关的标签
信息来源于互联网 本站不为信息真实性负责