环特生物的药物筛选技术已推动多个新药项目进入临床试验阶段。例如,其与奥默药业合作研发的新型肌肉松弛拮抗药物,通过斑马鱼类过敏检测发现Bridion在高剂量下的致敏性,经结构优化后已进入III期临床试验;北京市tumor研究所基于环特转基因斑马鱼模型发现的多肽药物,亦已完成临床前研究并提交IND申请。此外,环特的技术平台已服务赛诺菲、药明康德等100余家国内外药企,申请发明专利57项,发表SCI论文98篇,其斑马鱼实验数据被广泛应用于CFDA/NMPA的临床试验申报。未来,环特将继续深化类organ、环肽及AI驱动的药物筛选技术研发,为全球新药研发提供更高效的解决方案。怎么在药物研发完成自动化与高通量筛选优势?小分子化合物筛选方法

微流控技术的出现,为药物组合筛选开辟了新途径。微流控芯片就像一个微型实验室,能够在微小的通道内精确控制药物浓度和细胞培养环境。它具备高通量、自动化的特点,可以同时进行多种药物组合的实验。在芯片上,科研人员可以精确地调配不同药物的比例和浓度,实时监测细胞对各种药物组合的反应,例如细胞的生长状态、代谢变化等。比如,在筛选医疗心血管疾病的药物组合时,利用微流控芯片可以快速测试不同降压药、降脂药的多种组合,观察对血管内皮细胞和心肌细胞的影响,从而高效地找到相当有潜力的药物组合方案。微流控技术与传统筛选方法相比,不仅节省了时间和成本,还能提供更加精细和准确的实验数据,为药物组合筛选提供了更有力的支持。生物制品药物筛选cro高通量办法完成糖活性酶的挑选。

协同效应评估是药物组合筛选的关键环节,常用方法包括Loewe加和性模型、Bliss单独性模型及Chou-Talalay联合指数(CI)法。其中,CI值是宽泛接受的量化指标:CI<1表示协同作用,CI=1表示相加作用,CI>1表示拮抗作用。例如,在抗耐药菌组合筛选中,若A与B的CI值为0.5,表明两者联用可降低50%的用药剂量仍达到相同疗效,明显减少毒副作用。机制解析则需结合多组学技术(如转录组、蛋白质组及代谢组)与功能实验。例如,通过RNA测序发现,某抗tumor组合可同时下调PI3K/AKT与RAS/MAPK两条促ancer通路,解释其协同抑制tumor增殖的机制;通过CRISPR-Cas9基因编辑技术敲除特定靶点,可验证关键协同分子(如细胞周期蛋白D1)的作用。此外,单细胞测序技术可揭示组合用药对tumor异质性的影响,为精细医疗提供依据。
环特生物将高通量筛选与虚拟药物筛选技术有机结合,形成“干湿实验”闭环。其高通量筛选体系包含微量药理模型、自动化操作系统及高灵敏度检测系统,可在短时间内完成数万种化合物的活性测试。例如,在抗血栓药物筛选中,环特利用RaPID系统对因子XIIa(FXIIa)催化结构域进行靶向筛选,成功发现多种选择性抑制剂,其中部分化合物已进入临床前研究阶段。虚拟筛选方面,环特通过分子对接技术预测化合物与靶标的结合能力,结合定量构效关系(QSAR)模型优化先导分子结构。例如,在K-Ras(G12D)突变体抑制剂筛选中,虚拟筛选将候选化合物数量从百万级压缩至千级,明显提升了实验效率。针对判定的靶点筛选相应抑制剂或激动剂,这种筛选模式我们称为根据靶点的筛选。

在药物组合筛选领域,新兴技术不断涌现,为筛选工作带来新的突破,其中机器学习和人工智能算法、微流控技术等应用宽泛且极具潜力。机器学习和人工智能算法凭借强大的数据处理与分析能力,成为药物组合筛选的有力工具。这些算法能够对海量的药物数据、疾病信息以及生物分子数据进行深度挖掘和建模。以深度学习算法为例,它可以对基因表达数据进行分析,通过复杂的神经网络模型,挖掘出与疾病相关的分子特征。科研人员利用这些特征,能够预测哪些药物组合可以调节这些关键分子,从而实现对疾病的有效干预。例如,在针对某种罕见ancer的研究中,通过分析患者的基因表达谱,利用机器学习算法预测出特定的靶向药物与免疫医疗药物的组合,显著提高了对肿瘤细胞的抑制效果 。用于肿瘤免疫药物高通量筛选渠道有哪些?药用辅料筛选
针对新药研发高通量筛选1小时究竟能挑选多少样品?小分子化合物筛选方法
罕见病由于患者数量少、市场需求小,长期以来面临着药物研发困境。环特药物筛选为罕见病药物研发带来了新的希望。利用斑马鱼模型,可以模拟多种罕见病的病理特征,为药物筛选提供有效的实验平台。例如,对于一些遗传性罕见病,通过基因编辑技术在斑马鱼中引入相应的基因突变,构建疾病模型。然后,将大量的化合物库应用于这些模型斑马鱼,筛选出能够改善疾病症状或纠正病理变化的潜在药物。由于斑马鱼实验的高效性,能够在较短时间内对大量化合物进行筛选,很大增加了发现罕见病医疗药物的机会。环特药物筛选为罕见病患者带来了更多医疗的可能,推动了罕见病药物研发领域的进步。小分子化合物筛选方法