语音识别基本参数
  • 品牌
  • Bothlent
  • 型号
  • TS-USB-6MIC / TS-GX-6MIC系列
  • 封装形式
  • 软件算法+硬件
  • 工作电源电压
  • 5
语音识别企业商机

    直接调用即可开启语音识别功能。RunASR函数代码如下:用户说完话后,LD3320通过打分的方式,将关键词列表中特征**相似的一个作为输出。然后LD3320会产生一个中断信号,此时MCU跳入中断函数读取C5寄存器的值,该值即为识别结果,得到结果后,用户可以根据数值来实现一些功能,比如读取到1,说明是“播放音乐”,那么可以调用前面的PlaySound函数来播放音乐。语音识别控制的关键点在于语音识别的准确率。表1给出了测试结果,当然也可以在识别列表中加入更多的关键词来做测试。通过测试结果可以看出,LD3320的识别率在95%上,能够满足用户需求。4结语本文讨论了基于AVR单片机的语音识别系统设计的可行性,并给出了设计方案。通过多次测试结果表明,本系统具有电路运行稳定,语音识别率高,成本低等优点。同时借助于LD3320的MP3播放功能,该系统具有一定的交互性和娱乐性。移植性方面,系统通过简单的修改,可以很方便地将LD3320驱动程序移植到各种嵌入式系统中。随着人们对人工智能功能的需求,语音识别技术将越来越受到人们的关注,相信不久的将来,语音识别将会拥有更广阔的应用。主流语音识别框架还是由 3 个部分组成:声学模型、语言模型和解码器,有些框架也包括前端处理和后处理。海南语音识别工具

    人们在使用梅尔倒谱系数及感知线性预测系数时,通常加上它们的一阶、二阶差分,以引入信号特征的动态特征。声学模型是语音识别系统中为重要的部分之一。声学建模涉及建模单元选取、模型状态聚类、模型参数估计等很多方面。在目前的LVCSR系统中,普遍采用上下文相关的模型作为基本建模单元,以刻画连续语音的协同发音现象。在考虑了语境的影响后,声学模型的数量急剧增加,LVCSR系统通常采用状态聚类的方法压缩声学参数的数量,以简化模型的训练。在训练过程中,系统对若干次训练语音进行预处理,并通过特征提取得到特征矢量序列,然后由特征建模模块建立训练语音的参考模式库。搜索是在指定的空间当中,按照一定的优化准则,寻找优词序列的过程。搜索的本质是问题求解,应用于语音识别、机器翻译等人工智能和模式识别的各个领域。它通过利用已掌握的知识(声学知识、语音学知识、词典知识、语言模型知识等),在状态(从高层至底层依次为词、声学模型、HMM状态)空间中找到优的状态序列。终的词序列是对输入的语音信号在一定准则下的一个优描述。在识别阶段,将输入语音的特征矢量参数同训练得到的参考模板库中的模式进行相似性度量比较。上海语音识别翻译意味着具备了与人类相仿的语言识别能力。

    它在某些实际场景下的识别率无法达到人们对实际应用的要求和期望,这个阶段语音识别的研究陷入了瓶颈期。第三阶段:深度学习(DNN-HMM,E2E)2006年,变革到来。Hinton在全世界学术期刊Science上发表了论文,di一次提出了"深度置信网络"的概念。深度置信网络与传统训练方式的不同之处在于它有一个被称为"预训练"(pre-training)的过程,其作用是为了让神经网络的权值取到一个近似优解的值,之后使用反向传播算法(BP)或者其他算法进行"微调"(fine-tuning),使整个网络得到训练优化。Hinton给这种多层神经网络的相关学习方法赋予了一个全新的名词——"深度学习"(DeepLearning,DL)。深度学习不*使深层的神经网络训练变得更加容易,缩短了网络的训练时间,而且还大幅度提升了模型的性能。以这篇划时代的论文的发表为转折点,从此,全世界再次掀起了对神经网络的研究热潮,揭开了属于深度学习的时代序幕。在2009年,Hinton和他的学生Mohamed将深层神经网络(DNN)应用于声学建模,他们的尝试在TIMIT音素识别任务上取得了成功。然而TIMIT数据库包含的词汇量较小。在面对连续语音识别任务时还往往达不到人们期望的识别词和句子的正确率。2012年。

    LSTM通过输入门、输出门和遗忘门可以更好的控制信息的流动和传递,具有长短时记忆能力。虽然LSTM的计算复杂度会比DNN增加,但其整体性能比DNN有相对20%左右稳定提升。BLSTM是在LSTM基础上做的进一步改进,考虑语音信号的历史信息对当前帧的影响,还要考虑未来信息对当前帧的影响,因此其网络中沿时间轴存在正向和反向两个信息传递过程,这样该模型可以更充分考虑上下文对于当前语音帧的影响,能够极大提高语音状态分类的准确率。BLSTM考虑未来信息的代价是需要进行句子级更新,模型训练的收敛速度比较慢,同时也会带来解码的延迟,对于这些问题,业届都进行了工程优化与改进,即使现在仍然有很多大公司使用的都是该模型结构。图像识别中主流的模型就是CNN,而语音信号的时频图也可以看作是一幅图像,因此CNN也被引入到语音识别中。要想提高语音识别率,就需要克服语音信号所面临的多样性,包括说话人自身、说话人所处的环境、采集设备等,这些多样性都可以等价为各种滤波器与语音信号的卷积。而CNN相当于设计了一系列具有局部关注特性的滤波器,并通过训练学习得到滤波器的参数,从而从多样性的语音信号中抽取出不变的部分。技术的发展,现在口音、方言、噪声等场景下的语音识别也达到了可用状态。

    CNN本质上也可以看作是从语音信号中不断抽取特征的一个过程。CNN相比于传统的DNN模型,在相同性能情况下,前者的参数量更少。综上所述,对于建模能力来说,DNN适合特征映射到空间,LSTM具有长短时记忆能力,CNN擅长减少语音信号的多样性,因此一个好的语音识别系统是这些网络的组合。端到端时代语音识别的端到端方法主要是代价函数发生了变化,但神经网络的模型结构并没有太大变化。总体来说,端到端技术解决了输入序列的长度远大于输出序列长度的问题。端到端技术主要分成两类:一类是CTC方法,另一类是Sequence-to-Sequence方法。传统语音识别DNN-HMM架构里的声学模型,每一帧输入都对应一个标签类别,标签需要反复的迭代来确保对齐更准确。采用CTC作为损失函数的声学模型序列,不需要预先对数据对齐,只需要一个输入序列和一个输出序列就可以进行训练。CTC关心的是预测输出的序列是否和真实的序列相近,而不关心预测输出序列中每个结果在时间点上是否和输入的序列正好对齐。CTC建模单元是音素或者字,因此它引入了Blank。对于一段语音,CTC**后输出的是尖峰的序列,尖峰的位置对应建模单元的Label,其他位置都是Blank。该系统分析该人的特定声音,并使用它来微调对该人语音的识别,从而提高准确性。天津语音识别工具

语音识别,通常称为自动语音识别。海南语音识别工具

    还可能存在语种混杂现象,如中英混杂(尤其是城市白领)、普通话与方言混杂,但商业机构在这方面的投入还不多,对于中英混杂语音一般*能识别简单的英文词汇(如"你家Wi-Fi密码是多少"),因此如何有效提升多语种识别的准确率,也是当前语音识别技术面临的挑战之一。语音识别建模方法语音识别建模方法主要分为模板匹配、统计模型和深度模型几种类型,以下分别介绍DTW、GMM-HMM、DNN-HMM和端到端模型。往往会因为语速、语调等差异导致这个词的发音特征和时间长短各不相同。这样就造成通过采样得到的语音数据在时间轴上无法对齐的情况。如果时间序列无法对齐,那么传统的欧氏距离是无法有效地衡量出这两个序列间真实的相似性的。而DTW的提出就是为了解决这一问题,它是一种将两个不等长时间序列进行对齐并且衡量出这两个序列间相似性的有效方法。DTW采用动态规划的算法思想,通过时间弯折,实现P和Q两条语音的不等长匹配,将语音匹配相似度问题转换为**优路径问题。DTW是模板匹配法中的典型方法,非常适合用于小词汇量孤立词语音识别系统。但DTW过分依赖端点检测,不适合用于连续语音识别,DTW对特定人的识别效果较好。动态时间规整(DTW),它是在马尔可夫链的基础上发展起来的。海南语音识别工具

与语音识别相关的文章
与语音识别相关的产品
与语音识别相关的新闻
与语音识别相关的问题
新闻资讯
产品推荐
信息来源于互联网 本站不为信息真实性负责