声学回声基本参数
  • 品牌
  • Bothlent
  • 型号
  • 123
  • 封装形式
  • DIP
声学回声企业商机

    为什么又这么冷呢?我能想到的一个答案是它太难了,它非常有挑战性。下面就来看一下它的技术难点。5非线性声学回声消除的技术难点,我从6个不同的维度比较了线性的和非线性这两种回声消除问题。个维度,系统传递函数。在线性系统里面,我们认为系统传递函数是一个缓慢时变的系统,我们可以通过自适应滤波的方式去逼近这个传递函数,来有效抑制回声。而在非线性系统里面,系统传递函数通常是快变、突变的,我们如果用线性的方法去逼近的话,会出现滤波器的更新速度,跟不上系统传递函数变化的速度,就会导致声学回声消除不理想。第二个维度是优化模型,在线性里面我们是有一套非常完备的线性优化模型,从目标函数的构建到系统优化问题的求解,整个脉络是很清晰的。而在非线性的系统里面,目前是缺少一种有效的模型来对它进行支撑的。接下来的四个维度对应4个问题,它们是线性回声消除领域普遍存在的4个难点问题,这些问题在非线性领域也同样存在。比如强混响问题,我们如果在一个小型会议室里开视频会议,那么声音会经过多次墙壁反射,带来很强的混响,混响的拖尾时间会很长。如果想抑制这样的强混响回声,就需要把线性滤波器的长度加长。

    声学回声的功能怎么样?深圳手机声学回声打断算法

深圳手机声学回声打断算法,声学回声

    在线性的回声场景里,双耦合的非线性滤波器是处于休眠的状态,所以它的值是趋于0的,这个时候起主导作用的是线性滤波器。接下来我们再看一下右边的非线性声学回声场景。我们假设非线性的失要出现在t1到t2这个时间段内,大家可以看到黄色线在这个时间里,出现了一次突变,对于NLMS算法,当出现非线性失真之后,它的线性滤波器会去逼近非线性失真。但是由于学习的速度跟不上滤波器变化的速度,所以它跟真实的值之间总是存在一个比较大的gap。同时当非线性失真消失之后,它还需要一段时间恢复到正常状态,因此在整个时间段里,都会出现回声泄露的问题。接下来我们再看双耦合算法,在非线性失真出现之后,线性滤波器会进入到一种相对休眠的状态,就是前面所提到的耦合机制,会降低它的更新速度,所以在整个非线性出现的这段时间里,他的值是缓慢变化的。进入非线性失真状态之后,非线性滤波器开始工作,它会快速非线性特性的变化,而当非线性失真消失之后,非线性滤波器又进入休眠状态。将这两个滤波器结合起来,就可以实现对整个声学回声路径的变化进行有效。这里只是给出了一个示例,实际情况往往要复杂很多。接下来我们对这2个滤波器做了特性比较,主要是从4个不同的维度。

     福建手机声学回声打断算法声学回声往往会经过多个不同路径的多次反射之后到达接收端。

深圳手机声学回声打断算法,声学回声

    我们还希望它在一个短时的观测时间窗的尺度里面也是比较好的,即局部比较好,所以在数学期望内部,我们又对误差进行了短时积分。这个优化准则跟传统的线性自适应滤波器是有本质区别的,因为传统的线性自适应滤波器基于小均方误差准则,它只是在统计意义上比较好,没有局部比较好约束。首先来求解这里的Wl,就是线性滤波器。主要求解方法是,假设Wn就是非线性滤波器是比较好解,把这个比较好解代入到前面的优化方程里,就会得到上面简化之后的优化目标函数。在这个地方,我们又做了一些先验假设,假设非线性的滤波器的一阶统计量和二阶统计量都等于0,我们就可以把上面的优化问题进一步简化,就得到我们非常熟悉的方程,就是Wiener-Hopf方程。这个结果告诉我们,线性滤波器的比较好解跟传统的自适应滤波器的比较好解是一致的,都是Wiener-Hopf方程的理论比较好解。所以我们就可以采用一些现有的比较成熟的算法,比如NLMS算法、RLS算法,对它进行迭代求解。这就是Wl的设计。接下来再看看Wn的设计。Wn的设计跟Wl的设计是类似的,也是需要将优化之后的线性滤波器,代入到开始的优化问题里,可以把前面的优化问题简化成下面的方程。接下来进行一系列的变量替换之后。

   

    以此来应对市面上绝大多数的移动设备。另外,线性滤波器虽然不具备调整延时的能力,但可以通过估计的index衡量当前信号的延时状态,范围为[0,kNormalNumPartitions],如果index处于作用域两端,说明真实延时过小或过大,会影响线性回声估计的效果,严重的会带来回声,此时需要结合固定延时与大延时检测来修正。非线性滤波非线性部分一共做了两件事,就是想尽千方百计干掉远端信号。(1)根据线性部分提供的估计的回声信号,计算信号间的相干性,判别远近端帧状态。(2)调整抑制系数,计算非线性滤波参数。非线性滤波抑制系数为hNl,大致表征着估计的回声信号e(n)中,期望的近端成分与残留的非线性回声信号y''(n)在不同频带上的能量比,hNl是与相干值是一致的,范围是[0,],通过图5(b)可以看出需要消除的远端部分幅度值也普遍在,如果直接使用hNl滤波会导致大量的回声残留。因此WebRTC工程师对hNl做了如下尺度变换,over_drive与nlp_mode相关,不同的抑制激进程度,drive_curve是一条单调递增的凸曲线,范围[]。由于中高频的尾音在听感上比较明显,所以他们设计了这样的抑制曲线来抑制高频尾音。我们记尺度变换的α=over_drive_scaling*drive_curve。

     声学回声是由于麦克风和扬声器的声学泄露耦合而成。

深圳手机声学回声打断算法,声学回声

    黑色这条线是标准NLMS算法的回声抑制比。我们可以看到,NLMS算法在收敛之后,回声抑制比只能到10个分贝左右,相对比较低。而双耦合算法在收敛之后,可以达到25个分贝以上,也就是说它比NLMS算法多15个分贝,这个优势是很明显的。接下来我们再看第二个示例,针对弱非线性失真的情况,左边是语谱,右边是回声抑制比。我们评估单讲性能的主要指标是回声抑制比和收敛速度。首先看一下NLMS算法,它在收敛之后,大概可以抑制22~25个分贝。这个算法的收敛速度很慢,大概经过100多帧之后才会进入到相对收敛的状态。再来看一下双耦合算法,在稳定之后,可以抑制35~40个分贝,比NLMS算法大概提升15~20个分贝的回声抑制比。同时它还有一个很明显的优势:收敛速度很快,几乎是回声到了之后,他瞬间就进入到收敛状态。接下来这个是针对不同手机机型的回声抑制比的比较。红色是双耦合算法,蓝色是NLMS算法,从这组数据里面,我们可以看到双耦合算法比NLMS算法普遍提升了大概10个分贝以上的回声抑制比,具有比较大的优势。再进入双讲测试场景。我首先介绍一下测试的示例,这组数据是一个视频会议的数据,左边这个是原始的麦克信号语谱,右边这个是回声参考信号语谱。

     什么是非线性声学回声。深圳手机声学回声打断算法

非线性的声学回声消除问题,在实际声学系统里面非常普遍也非常棘手。深圳手机声学回声打断算法

    WebRtcAec_Process接口如上,参数reported_delay_ms为当前设备需要调整延时的目标值。如某Android设备固定延时为400ms左右,400ms已经超出滤波器覆盖的延时范围,至少需要调整300ms延时,才能满足回声消除没有回声的要求。固定延时调整在WebRTCAEC算法开始之初作用一次,为什么target_delay是这么计算?inttarget_delay=startup_size_ms*self->rate_factor*8;startup_size_ms其实就是设置下去的reported_delay_ms,这一步将计算时间毫秒转化为样本点数。16000hz采样中,10ms表示160个样本点,因此target_delay实际就是需要调整的目标样本点数(aecpc->rate_factor=aecpc->splitSampFreq/8000=2)。我们用330ms延时的数据测试:如果设置默认延时为240ms,overhead_elements次被调整了-60个block,负值表示向前查找,正好为60*4=240ms,之后线性滤波器固定index=24,表示24*4=96ms延时,二者之和约等于330ms。②大延时检测是基于远近端数据相似性在远端大缓存中查找相似的帧的过程,其算法原理有点类似音频指纹中特征匹配的思想。大延时调整的能力是对固定延时调整与线型滤波器能力的补充,使用它的时候需要比较慎重。需要控制调整的频率,以及控制造成非因果的风险。

     深圳手机声学回声打断算法

深圳鱼亮科技有限公司是一家有着雄厚实力背景、信誉可靠、励精图治、展望未来、有梦想有目标,有组织有体系的公司,坚持于带领员工在未来的道路上大放光明,携手共画蓝图,在广东省等地区的通信产品行业中积累了大批忠诚的客户粉丝源,也收获了良好的用户口碑,为公司的发展奠定的良好的行业基础,也希望未来公司能成为*****,努力为行业领域的发展奉献出自己的一份力量,我们相信精益求精的工作态度和不断的完善创新理念以及自强不息,斗志昂扬的的企业精神将**深圳鱼亮科技供应和您一起携手步入辉煌,共创佳绩,一直以来,公司贯彻执行科学管理、创新发展、诚实守信的方针,员工精诚努力,协同奋取,以品质、服务来赢得市场,我们一直在路上!

与声学回声相关的文章
深圳录播声学回声环境噪声抑制算法
深圳录播声学回声环境噪声抑制算法

达到,接近于1。黄色曲线,对应的数据具有比较弱的非线性失真,所以在时间T变大了之后,短期相关度逐渐降低,趋于一个相对平稳的值。而红色曲线是我们选的一条具有强非线性失真的数据,为了对这三组数据进行有效对比,我们还给出了一条蓝色曲线,这条曲线是信号与噪声的短时相关度,它在整个时间T范围内都很...

与声学回声相关的新闻
  • 安徽机器人唤醒声学回声 2023-04-06 03:07:47
    以此来应对市面上绝大多数的移动设备。另外,线性滤波器虽然不具备调整延时的能力,但可以通过估计的index衡量当前信号的延时状态,范围为[0,kNormalNumPartitions],如果index处于作用域两端,说明真实延时过小或过大,会影响线性回声估计的效果,严重的会带来回声,此时需...
  • 至于双讲恢复能力WebRTCAEC算法提供了{kAecNlpConservative,kAecNlpModerate,kAecNlpAggressive}3个模式,由低到高依次不同的抑制程度,远近端信号处理流程,NLMS自适应算法(上图中橙色部分)的运用旨在尽可能地消除信号d(n)中的线...
  • 浙江电子类声学回声介绍 2023-02-06 02:04:06
    n)后,被麦克风采集到的信号,此时经过房间混响以及麦克风采集的信号y(n)已经不能等同于信号x(n)了,我们记线性叠加的部分为y'(n),非线性叠加的部分为y''(n),y(n)=y'(n)+y''(n);s(n):麦克风采集的近端说话人的语音信号,即我们真正想提取并发送到远端的信号;v...
  • 光纤数据声学回声有什么 2023-02-06 09:03:58
    声学回声消除应用技术,随着秒新月异的科技发展,各项技术成果不断地应用在我们日益拓展的各领域需求当中,刷新着我们的生活和工作。地球村的崛起,不断以互联网、物联网等方式揭示着万物相连的关系。无论是飞机、高铁还是电话、网络,都成为托起地球新村时空纵横的重要载体。怎样拉近人与人之间的关系,如何建...
与声学回声相关的问题
信息来源于互联网 本站不为信息真实性负责