当电网频率发生变化时,并网运行的汽轮发电机组或水轮发电机组通过自身的调速系统自动调整原动机的输出功率。以汽轮发电机组为例,当电网频率下降时,汽轮机的转速降低,调速系统中的转速感受机构(如离心调速器)检测到转速变化,将其转换为位移或油压信号,通过传动放大机构作用于调节汽阀,使调节汽阀开度增大,增加汽轮机的进汽量。根据汽轮机的功率方程,进汽量的增加会使汽轮机的输出功率增大,从而向电网提供更多的有功功率,有助于提升电网频率。反之,当电网频率升高时,调速系统动作使调节汽阀开度减小,减少进汽量,降低机组输出功率,抑制电网频率的上升。一次调频系统的性能指标将不断提高,以满足新型电力系统的需求。河南电子一次调频系统

、未来发展趋势人工智能优化利用强化学习算法动态优化调频参数,适应不同工况下的调频需求。虚拟电厂(VPP)参与整合分布式能源、储能与可控负荷,形成虚拟调频资源池,提升电网灵活性。氢能储能调频氢燃料电池响应速度快(秒级),适合参与一次调频,但需解决成本与寿命问题。5G通信赋能低时延、高可靠的5G网络可实现调频指令的毫秒级传输,提升调频协同效率。国际标准对接推动中国一次调频标准与IEEE、IEC等国际标准接轨,促进技术输出与市场拓展。江苏一次调频系统设备调节速率是衡量一次调频性能的重要指标,如火电机组≥1.5%额定功率/秒。

、动态过程:从频率扰动到功率平衡频率扰动的传递链负荷突变(如大电机启动)→电网频率下降→发电机转速降低→调速器动作→汽门开大→蒸汽流量增加→原动机功率上升→电磁功率与负荷重新平衡。时间尺度:机械惯性响应:0.1~1秒(抑制频率快速变化)。汽轮机蒸汽调节:1~5秒(蒸汽压力波动影响功率输出)。锅炉燃烧响应:10~30秒(燃料量变化导致主汽压力变化)。一次调频的局限性稳态偏差:一次调频*能部分补偿频率偏差,无法恢复至额定值。功率限制:受机组比较大/**小出力约束,调频容量有限。矛盾点:调差率越小,调频精度越高,但系统稳定性降低(易引发功率振荡)。
调整PID参数:对于水轮发电机组,可采取调整一次调频PID参数增加出力响应正向积分时间、减少水锤效应反向影响。减小调频死区:在同样频差情况下增大功率调节量等措施改善一次调频性能。采用增强型一次调频模式:对电站机组一次调频功能进行改造,采用增强型一次调频模式,增加一次调频动作时的积分电量。合理选择调节模式:调速器厂家根据电站机组实际运行情况设计两套调速器调节模式,根据现场动态性能试验结果,合理地选择调节模式。实验验证与参数设置:电科院根据调速厂家改造后的一次调频功能在不同频差、不同开度工况下进行实验验证,合理设置一次调频参数。优化频率采集周期及算法:测试、优化调速器频率采集周期及算法,减少一次调频响应滞后时间,提高积分时间、响应速率。一次调频通过发电机组的调速系统实现,是电力系统稳定运行的重要保障。

调速器的类型与演进机械液压调速器:通过飞锤感受转速变化,动作时间约0.5秒,但精度低(误差±2%)。数字电液调速器(DEH):采用PID算法,响应时间<0.1秒,支持远程参数整定。智能调速器的类型:集成预测控制与自学习功能,适应新能源波动特性。静态调差率与动态响应的矛盾调差率越小(如3%),调频精度越高,但可能导致机组间功率振荡;调差率越大(如6%),系统稳定性增强,但频率偏差增大。需通过仿真优化调差率与死区参数。一次调频能限制电网频率变化,确保频率在稳定范围内波动。江苏一次调频系统设备
在新能源场站中,一次调频可增强电网的惯量支撑能力,缓解新能源出力波动对频率的影响。河南电子一次调频系统
功率输出调整汽轮机:高压缸功率快速上升(约0.3秒)。中低压缸功率因再热延迟逐步增加(约3秒)。水轮机:水流流量增加后,功率逐步上升(约2秒)。蜗壳压力波动可能导致功率振荡(需压力前馈补偿)。稳态偏差与二次调频原动机功率调节后,频率稳定在偏差值(如49.97Hz),需二次调频(如AGC)恢复至50Hz。四、原动机功率调节的典型问题与优化问题1:再热延迟导致功率滞后(汽轮机)现象:高压缸功率快速上升,但中低压缸功率延迟,导致总功率响应慢。优化:增加中压调节汽门(IPC)控制,提前调节中低压缸功率。采用前馈补偿(如根据高压缸功率预测中低压缸功率)。问题2:水流惯性导致功率振荡(水轮机)现象:导叶开度变化后,水流因惯性导致功率超调或振荡。优化:增加PID控制中的微分项(Td),抑制超调。采用分段调节策略(如先快速开大导叶,再缓慢微调)。河南电子一次调频系统