TiN和TiAlN涂层常应用于精冲模,采用XRD技术分析了不同厚度TiN和TiAlN涂层的相变化,并采用Sin2ψ法测量了TiN涂层和基体以及TiAlN基体的残留应力,应用显微硬度计测量了涂层的显微硬度。结果表明:TiN涂层(111)和(222)晶面存在明显择优取向,涂层残留应力分布在-2347~-1920MPa,基体残留应力分布在-154.9~-69.21MPa,均随厚度增加而减小;TiAlN涂层主要相成分为Ti3Al3N2,且(107)晶面存在择优取向,基体残留应力分布在-123.7~469.5MPa,主要呈拉应力状态,且随厚度增加而增大,对模具寿命有较大影响;TiN和TiAlN涂层显微硬度随厚度增加而增大。无论在空气中还是重油环境下,TiN涂层摩擦系数均高于DLC涂层,耐磨性低于DLC涂层。威海镀黑氮化钛加工中心
TiN薄膜无毒、质轻、强度高且具有优良的生物相容性,因此它是非常理想的医用金属材料,可用作植入人体的植入物和手术器械等阎。此外,氮化钛薄膜还能作为其他优良生物相溶性薄膜的增强薄膜。国外的Nelea等人通过镀制TiN薄膜中间层大幅度提高了医用常用材料羟磷灰石薄膜(HA)的机械性能和附着力。用TiN薄膜涂覆在IF—MS2上。可以提高二钼化硫润滑剂的耐磨性。用TIN薄膜涂覆在IF—MS2上,因为它具有的高硬度、高熔点、高磨损抵抗力,优良的化学稳定性等特点,因此可以在提高飞机和航天器的发动机等零件的润滑性能的同时,又可以保证航天零件的耐高温和耐摩擦性能。上海压铸模具氮化钛镀黑钛究纯钛铸件表面镀制氮化钛薄膜后在氟环境中的耐腐蚀性。实验组较对照组的表面侵蚀明显减轻。
40、氮化钛(TiN)具有典型的NaCl型结构,属面心立方点阵,晶格常数a=0.4241nm,其中钛原子位于面心立方的角顶。TiN是非化学计量化合物,其稳定的组成范围为TiN0.37-TiN1.16,氮的含量可以在一定的范围内变化而不引起TiN结构的变化。TiN粉末一般呈黄褐色,超细TiN粉末呈黑色,而TiN晶体呈金黄色。TiN熔点为2950℃,密度为5.43-5.44g/cm3,莫氏硬度8-9,抗热冲击性好。TiN熔点比大多数过渡金属氮化物的熔点高,而密度却比大多数金属氮化物低,因此是一种很有特色的耐热材料。TiN的晶体结构与TiC的晶体结构相似,只是将其中的C原子置换成N原子。
50.用TiN薄膜涂覆在IF—MS2上。可以提高二钼化硫润滑剂的耐磨性。用TIN薄膜涂覆在IF—MS2上,因为它具有的高硬度、高熔点、高磨损抵抗力,优良的化学稳定性等特点,因此可以在提高飞机和航天器的发动机等零件的润滑性能的同时,又可以保证航天零件的耐高温和耐摩擦性能。TiN薄膜用于高温大气稳定太阳能吸收层的研究开始于1984年,较为近(Ti,A1)N涂层也被建议应用于太阳能选择吸收层和太阳能控制窗口,这主要是因为(Ti,AI)N涂层耐高温的特点。关于TiN和TiA1N涂层在太阳能领域的应用。氮化钛是一种优良的结构材料。在轴承和密封环领域也多用氮化钛合金凸显了氮化钛优异的应用效果。
1.(1)氮化钛生物兼容性高,可以应用于临床医学和口腔医学方面。(2)氨化钛摩擦系数较低,可作为高温润滑剂。(3)氮化钛具有金属光泽,可作为仿真的金色装饰材料,在代金装饰行业中具有良好的应用前景;氮化钛还可以作为金色涂料应用于首饰行业;可以作为替代WC的潜在材料,使材料的应用成本大幅度降低。(4)有较为的硬度和耐磨性,可用于开发新型刀具,这种新型的刀具比普通硬质合金刀具的耐用度和使用寿命都显著提高。(5)氮化钛是一种新型的多功能陶瓷材料。在TiC-Mo-Ni系列的金属陶瓷中加入一定量的氮化钛,会使硬质相晶粒明显细化,从而使陶瓷的理学性能不管是在室温还是在高温条件下都有了很大程度的改善,继而使金属陶瓷的高温耐腐蚀性和抗氧化性得到很大提高;将TiN粉末按一定比例添加到陶瓷中,可增强陶瓷的强度、韧性和硬度;将纳米氮化钛添加到TiN/AI2O3复相纳米陶瓷中,通过各种方法(如机械混合法)等将其混合均匀,得到的这种含有纳米氨化钛颗粒的陶瓷材料内部便形成导电网络。这种材料可作为电子元件应用于半导体工业中。(6)在镁碳砖中添加一定量的TiN能够使镁碳砖的抗渣侵蚀性得到很大程度的提高。(7)氮化钛是一种优良的结构材料,可用于喷汽推进器以及火箭等。氮化钛具有熔点高,化学稳定性好硬度大导电、导热和光性能好等良好的理化性质。宁波镀黑氮化钛镀黑钛
氮化钛涂层刀具由于其优异性能,很快在工业发达国家得以推广使用,并为机械加工行业带来巨大的经济效益。威海镀黑氮化钛加工中心
薄膜材料简介制造业中高速切削和干式切削等先进技术的发展对刀具提出了较高的要求,作为刀具涂层的薄膜材料TiN不仅要具有较高的硬度,而且要具有优良的耐磨性、耐热性、韧性和良好的化学稳定性等。硬质薄膜表面涂层可以实现上述要求。硬质薄膜表面涂层通常指为提高构件表面耐磨性、耐腐蚀性、耐高温性而涂覆于构件表面的膜层,厚度为几纳米到几十微米,材料通常是一些由过渡族金属与非金属构成的金属间化合物等。这些化合物一般由金属键、共价键、离子键,以及离子键和金属键的混合键键合,具有熔点高、硬度大的特征,通常还具有良好的化学稳定性和热稳定性。基于以上特征和优点,硬质薄膜表面涂层已被广泛应用于航空、工模具、电子等加工领域,并且在刀具、模具等方面有力推动了制造业的发展。氮化钛是第一种产业化并被广泛应用的硬质薄膜材料。氮化钛薄膜具有硬度高、耐磨、耐热、耐腐蚀等特性[1],为面心立方晶体结构,由金属键、共价键和离子键混合而成,同时具有金属晶体和共价晶体的特性。威海镀黑氮化钛加工中心