且4个隐含层中间间隔设置有dropout层。用于输入合并抽取的高等特征表示的深度神经网络包含2个隐含层,其***个隐含层的神经元个数是64,第二个神经元的隐含层个数是10,且2个隐含层中间设置有dropout层。且所有dropout层的dropout率等于。本次实验使用了80%的样本训练,20%的样本验证,训练50个迭代以便于找到较优的epoch值。随着迭代数的增加,中间融合模型的准确率变化曲线如图17所示,模型的对数损失变化曲线如图18所示。从图17和图18可以看出,当epoch值从0增加到20过程中,模型的训练准确率和验证准确率快速提高,模型的训练对数损失和验证对数损失快速减少;当epoch值从30到50的过程中,中间融合模型的训练准确率和验证准确率基本保持不变,训练对数损失缓慢下降;综合分析图17和图18的准确率和对数损失变化曲线,选取epoch的较优值为30。确定模型的训练迭代数为30后,进行了10折交叉验证实验。中间融合模型的10折交叉验证的准确率是%,对数损失是,混淆矩阵如图19所示,规范化后的混淆矩阵如图20所示。中间融合模型的roc曲线如图21所示,auc值为,已经非常接近auc的**优值1。(7)实验结果比对为了综合评估本实施例提出融合方案的综合性能。艾策科技:如何用数据分析重塑企业决策!软件验收测评
后端融合模型的10折交叉验证的准确率是%,对数损失是,混淆矩阵如图13所示,规范化后的混淆矩阵如图14所示。后端融合模型的roc曲线如图15所示,其显示后端融合模型的auc值为。(6)中间融合中间融合的架构如图16所示,中间融合方式用深度神经网络从三种模态的特征分别抽取高等特征表示,然后合并学习得到的特征表示,再作为下一个深度神经网络的输入训练模型,隐藏层的***函数为relu,输出层的***函数是sigmoid,中间使用dropout层进行正则化,防止过拟合,优化器(optimizer)采用的是adagrad,batch_size是40。图16中,用于抽取dll和api信息特征视图的深度神经网络包含3个隐含层,其***个隐含层的神经元个数是128,第二个隐含层的神经元个数是64,第三个隐含层的神经元个数是32,且3个隐含层中间间隔设置有dropout层。用于抽取格式信息特征视图的深度神经网络包含2个隐含层,其***个隐含层的神经元个数是64,其第二个隐含层的神经元个数是32,且2个隐含层中间设置有dropout层。用于抽取字节码n-grams特征视图的深度神经网络包含4个隐含层,其***个隐含层的神经元个数是512,第二个隐含层的神经元个数是384,第三个隐含层的神经元个数是256,第四个隐含层的神经元个数是125。国家软件测试中心艾策检测针对智能穿戴设备开发动态压力测试系统,确保人机交互的舒适性与安全性。
比黑盒适用性广的优势就凸显出来了。[5]软件测试方法手动测试和自动化测试自动化测试,顾名思义就是软件测试的自动化,即在预先设定的条件下运行被测程序,并分析运行结果。总的来说,这种测试方法就是将以人驱动的测试行为转化为机器执行的一种过程。对于手动测试,其在设计了测试用例之后,需要测试人员根据设计的测试用例一步一步来执行测试得到实际结果,并将其与期望结果进行比对。[5]软件测试方法不同阶段测试编辑软件测试方法单元测试单元测试主要是对该软件的模块进行测试,通过测试以发现该模块的实际功能出现不符合的情况和编码错误。由于该模块的规模不大,功能单一,结构较简单,且测试人员可通过阅读源程序清楚知道其逻辑结构,首先应通过静态测试方法,比如静态分析、代码审查等,对该模块的源程序进行分析,按照模块的程序设计的控制流程图,以满足软件覆盖率要求的逻辑测试要求。另外,也可采用黑盒测试方法提出一组基本的测试用例,再用白盒测试方法进行验证。若用黑盒测试方法所产生的测试用例满足不了软件的覆盖要求,可采用白盒法增补出新的测试用例,以满足所需的覆盖标准。其所需的覆盖标准应视模块的实际具体情况而定。
保留了较多信息,同时由于操作数比较随机,某种程度上又没有抓住主要矛盾,干扰了主要语义信息的提取。pe文件即可移植文件导入节中的动态链接库(dll)和应用程序接口(api)信息能大致反映软件的功能和性质,通过一个可执行程序引用的dll和api信息可以粗略的预测该程序的功能和行为。belaoued和mazouzi应用统计khi2检验分析了pe格式的恶意软件和良性软件的导入节中的dll和api信息,分析显示恶意软件和良性软件使用的dll和api信息统计上有明显的区别。后续的研究人员提出了挖掘dll和api信息的恶意软件检测方法,该类方法提取的特征语义信息丰富,但*从二进制可执行文件的导入节提取特征,忽略了整个可执行文件的大量信息。恶意软件和被***二进制可执行文件格式信息上存在一些异常,这些异常是检测恶意软件的关键。研究人员提出了基于二进制可执行文件格式结构信息的恶意软件检测方法,这类方法从二进制可执行文件的pe文件头、节头部、资源节等提取特征,基于这些特征使用机器学习分类算法处理,取得了较高的检测准确率。这类方法通常不受变形或多态等混淆技术影响,提取特征只需要对pe文件进行格式解析,无需遍历整个可执行文件,提取特征速度较快。对比分析显示资源占用率高于同类产品均值26%。
12)把节装入到vmm的地址空间;(13)可选头部的sizeofcode域取值不正确;(14)含有可疑标志。此外,恶意软件和良性软件间以下格式特征也存在明显的统计差异:(1)证书表是软件厂商的可认证的声明,恶意软件很少有证书表,而良性软件大部分都有软件厂商可认证的声明;(2)恶意软件的调试数据也明显小于正常文件的,这是因为恶意软件为了增加调试的难度,很少有调试数据;(3)恶意软件4个节(.text、.rsrc、.reloc和.rdata)的characteristics属性和良性软件的也有明显差异,characteristics属性通常**该节是否可读、可写、可执行等,部分恶意软件的代码节存在可写异常,只读数据节和资源节存在可写、可执行异常等;(4)恶意软件资源节的资源个数也明显少于良性软件的,如消息表、组图表、版本资源等,这是因为恶意软件很少使用图形界面资源,也很少有版本信息。pe文件很多格式属性没有强制限制,文件完整性约束松散,存在着较多的冗余属性和冗余空间,为pe格式恶意软件的传播和隐藏创造了条件。此外,由于恶意软件为了方便传播和隐藏,尽一切可能的减小文件大小,文件结构的某些部分重叠,同时对一些属性进行了特别设置以达到anti-dump、anti-debug或抗反汇编。安全扫描确认软件通过ISO 27001标准,无高危漏洞记录。贵港软件测试
艾策医疗检测中心为体外诊断试剂提供全流程合规性验证服务。软件验收测评
I)应用过程数据预防缺陷。这时的软件**能够记录软件缺陷,分析缺陷模式,识别错误根源,制订防止缺陷再次发生的计划,提供**这种括动的办法,并将这些活动贯穿于全**的各个项目中。应用过程数据预防缺陷有礴个成熟度子目标:1)成立缺陷预防组。2)识别和记录在软件生命周期各阶段引入的软件缺陷和消除的缺陷。3)建立缺陷原因分析机制,确定缺陷原因。4)管理,开发和测试人员互相配合制订缺陷预防计划,防止已识别的缺陷再次发生。缺陷预防计划要具有可**性。(II)质量控制在本级,软件**通过采用统计采样技术,测量**的自信度,测量用户对**的信赖度以及设定软件可靠性目标来推进测试过程。为了加强软件质量控制,测试组和质量保证组要有负责质量的人员参加,他们应掌握能减少软件缺陷和改进软件质量的技术和工具。支持统计质量控制的子目标有:?1)软件测试组和软件质量保证组建立软件产品的质量目标,如:产品的缺陷密度,**的自信度以及可信赖度等。2)测试管理者要将这些质量目标纳入测试计划中。3)培训测试组学习和使用统计学方法。4)收集用户需求以建立使用模型(III)优化测试过程在测试成熟度的***,己能够量化测试过程。这样就可以依据量化结果来调整测试过程。软件验收测评