企业商机
测评基本参数
  • 品牌
  • 艾策
  • 服务项目
  • CMA CNAS第三方软件检测
  • 服务地区
  • 全国
  • 服务周期
  • 1-10天
  • 适用对象
  • 办理软件验收和需要出具第三方软件检测报告的企业
  • 提供发票
  • 营业执照
  • 专业资格证
测评企业商机

    在数字化转型加速的,软件检测公司已成为保障各行业信息化系统稳定运行的力量。深圳艾策信息科技有限公司作为国内软件检测公司领域的企业,始终以技术创新为驱动力,深耕电力能源、科研教育、政企单位、研发科技及医疗机构等垂直场景,为客户提供从需求分析到运维优化的全链条质量保障服务。以专业能力筑牢行业壁垒作为专注于软件检测的技术型企业,艾策科技通过AI驱动的智能检测平台,实现了测试流程的自动化、化与智能化。其产品——软件检测系统,整合漏洞扫描、压力测试、合规性验证等20余项功能模块,可快速定位代码缺陷、性能瓶颈及安全风险,帮助客户将软件故障率降低60%以上。针对电力能源行业,艾策科技开发了电网调度系统专项检测方案,成功保障某省级电力公司百万级用户数据安全;在科研教育领域,其实验室管理软件检测服务覆盖全国50余所高校,助力科研数据存储与分析的合规性升级。此外,公司为政企单位政务云平台、研发科技企业创新产品、医疗机构智慧医疗系统提供的定制化检测服务,均获得客户高度认可。差异化服务塑造行业作为软件检测公司,艾策科技突破传统检测模式,推出“检测+培训+咨询”一体化服务体系。通过定期发布行业安全白皮书、举办技术研讨会。用户体验测评中界面交互评分低于同类产品均值15.6%。信息渗透测试报告

    先将训练样本的dll和api信息特征视图、格式信息特征视图以及字节码n-grams特征视图分别输入至一个深度神经网络中抽取高等特征表示,然后合并抽取的高等特征表示并将其作为下一个深度神经网络的输入进行模型训练,得到多模态深度集成模型。进一步的,所述多模态深度集成模型的隐藏层的***函数采用relu,输出层的***函数采用sigmoid,中间使用dropout层进行正则化,优化器采用adagrad。进一步的,所述训练得到的多模态深度集成模型中,用于抽取dll和api信息特征视图的深度神经网络包含3个隐含层,且3个隐含层中间间隔设置有dropout层;用于抽取格式信息特征视图的深度神经网络包含2个隐含层,且2个隐含层中间设置有dropout层;用于抽取字节码n-grams特征视图的深度神经网络包含4个隐含层,且4个隐含层中间间隔设置有dropout层;用于输入合并抽取的高等特征表示的深度神经网络包含2个隐含层,且2个隐含层中间设置有dropout层;所述dropout层的dropout率均等于。本发明实施例的有益效果是,提出了一种基于多模态深度学习的恶意软件检测方法,应用了多模态深度学习方法来融合dll和api、格式结构信息、字节码n-grams特征。信息渗透测试报告数字化转型中的挑战与应对:艾策科技的经验分享。

    程序利用windows提供的接口(windowsapi)实现程序的功能。通过一个可执行程序引用的动态链接库(dll)和应用程序接口(api)可以粗略的预测该程序的功能和行为。统计所有样本的导入节中引用的dll和api的频率,留下引用频率**高的60个dll和500个api。提取特征时,每个样本的导入节里存在选择出的dll或api,该特征以1表示,不存在则以0表示,提取的560个dll和api特征作为***个特征视图。提取格式信息特征视图pe是portableexecutable的缩写,初衷是希望能开发一个在所有windows平台上和所有cpu上都可执行的通用文件格式。pe格式文件是封装windows操作系统加载程序所需的信息和管理可执行代码的数据结构,数据**是大量的字节码和数据结构的有机融合。pe文件格式被**为一个线性的数据流,由pe文件头、节表和节实体组成。恶意软件或被恶意软件***的可执行文件,它本身也遵循格式要求的约束,但可能存在以下特定格式异常:(1)代码从**后一节开始执行;(2)节头部可疑的属性;(3)pe可选头部有效尺寸的值不正确;(4)节之间的“间缝”;(5)可疑的代码重定向;(6)可疑的代码节名称;(7)可疑的头部***;(8)来自;(9)导入地址表被修改;(10)多个pe头部;(11)可疑的重定位信息;。

    所述生成软件样本的dll和api信息特征视图,是先统计所有类别已知的软件样本的pe可执行文件引用的dll和api信息,从中选取引用频率**高的多个dll和api信息;然后判断当前的软件样本的导入节里是否存在选择出的某个引用频率**高的dll和api信息,如存在,则将当前软件样本的该dll或api信息以1表示,否则将其以0表示,从而对当前软件样本的所有dll和api信息进行表示形成当前软件样本的dll和api信息特征视图。进一步的,所述生成软件样本的格式信息特征视图,是从当前软件样本的pe格式结构信息中选取可能区分恶意软件和良性软件的pe格式结构特征,形成当前软件样本的格式信息特征视图。进一步的,所述从当前软件样本的pe格式结构信息中选取可能区分恶意软件和良性软件的pe格式结构特征,是从当前软件样本的pe格式结构信息中确定存在特定格式异常的pe格式结构特征以及存在明显的统计差异的格式结构特征;所述特定格式异常包括:(1)代码从**后一节开始执行,(2)节头部可疑的属性,(3)pe可选头部有效尺寸的值不正确,(4)节之间的“间缝”,(5)可疑的代码重定向,(6)可疑的代码节名称,(7)可疑的头部***,(8)来自,(9)导入地址表被修改,(10)多个pe头部,(11)可疑的重定位信息,。第三方验证实际启动速度较厂商宣称慢0.7秒。

    optimizer)采用的是adagrad,batch_size是40。深度神经网络模型训练基本都是基于梯度下降的,寻找函数值下降速度**快的方向,沿着下降方向迭代,迅速到达局部**优解的过程就是梯度下降的过程。使用训练集中的全部样本训练一次就是一个epoch,整个训练集被使用的总次数就是epoch的值。epoch值的变化会影响深度神经网络的权重值的更新次数。本次实验使用了80%的样本训练,20%的样本验证,训练50个迭代以便于找到较优的epoch值。随着迭代数的增加,前端融合模型的准确率变化曲线如图5所示,模型的对数损失变化曲线如图6所示。从图5和图6可以看出,当epoch值从0增加到5过程中,模型的验证准确率和验证对数损失有一定程度的波动;当epoch值从5到50的过程中,前端融合模型的训练准确率和验证准确率基本不变,训练和验证对数损失基本不变;综合分析图5和图6的准确率和对数损失变化曲线,选取epoch的较优值为30。确定模型的训练迭代数为30后,进行了10折交叉验证实验。前端融合模型的10折交叉验证的准确率是%,对数损失是,混淆矩阵如图7所示,规范化后的混淆矩阵如图8所示。前端融合模型的roc曲线如图9所示,该曲线反映的是随着检测阈值变化下检测率与误报率之间的关系曲线。渗透测试报告暴露2个高危API接口需紧急加固。兰州第三方软件检测单位

从传统到智能:艾策科技助力制造业升级之路。信息渗透测试报告

    [3]软件测试方法原则编辑1.尽早不断测试的原则应当尽早不断地进行软件测试。据统计约60%的错误来自设计以前,并且修正一个软件错误所需的费用将随着软件生存周期的进展而上升。错误发现得越早,修正它所需的费用就越少。[4]测试用例由测试输入数据和与之对应的预期输出结果这两部分组成。[4]3.**测试原则(1)**测试原则。这是指软件测试工作由在经济上和管理上**于开发机构的**进行。程序员应避免检査自己的程序,程序设计机构也不应测试自己开发的程序。软件开发者难以客观、有效地测试自己的软件,而找出那些因为对需求的误解而产生的错误就更加困难。[4](2)合法和非合法原则。在设计时,测试用例应当包括合法的输入条件和不合法的输入条件。[4](3)错误群集原则。软件错误呈现群集现象。经验表明,某程序段剩余的错误数目与该程序段中已发现的错误数目成正比,所以应该对错误群集的程序段进行重点测试。[4](4)严格性原则。严格执行测试计划,排除测试的随意性。[4](5)覆盖原则。应当对每一个测试结果做***的检查。[4](6)定义功能测试原则。检查程序是否做了要做的事*是成功的一半,另一半是看程序是否做了不属于它做的事。[4](7)回归测试原则。应妥善保留测试用例。信息渗透测试报告

测评产品展示
  • 信息渗透测试报告,测评
  • 信息渗透测试报告,测评
  • 信息渗透测试报告,测评
与测评相关的**
与测评相关的标签
信息来源于互联网 本站不为信息真实性负责