随着Blackwell架构GPU与CXL内存扩展技术的商用化,倍联德正研发支持FP4精度计算的下一代服务器,预计将AI推理性能再提升2倍。公司创始人覃超剑表示:“我们的目标不只是提供硬件,更要通过软硬协同优化,让自动驾驶、智能交通管理等应用像使用办公软件一样便捷。”从新加坡的自动驾驶接驳车到重庆的智慧交通平台,从西安的边缘计算试点到苏州的无人配送网络,倍联德实业有限公司正以全栈技术能力赋能智慧交通生态,为全球城市出行变革注入中国智造的重要动力。冷板式液冷与风冷混合架构,在保障高密度算力部署的同时,兼容现有数据中心基础设施。云边端协同解决方案提供商

针对智能制造场景,倍联德推出24核Atom架构的边缘计算工作站,集成NVIDIA Jetson AGX Orin模块,支持Profinet、EtherCAT等工业协议。在比亚迪的新能源电池生产线中,该方案通过实时分析焊接温度、压力等2000+传感器数据,将缺陷检测良品率从98.5%提升至99.97%,同时使产线能耗降低22%。倍联德通过“硬件+软件+服务”的一体化模式,构建起覆盖芯片厂商、ISV及终端用户的开放生态。公司与NVIDIA、英特尔、华为等企业建立联合实验室,共同优化CUDA-X AI加速库与TensorRT推理框架。在2025年AMD行业方案全国大会上,倍联德展出的“Strix Halo”液冷工作站系统,通过集成AMD锐龙AI Max+395处理器与128GB LPDDR5x内存,实现了Llama 3模型推理的毫秒级响应,较前代方案性能提升2.3倍。广东平安校园解决方案赋能服务器厂商通过开放硬件接口标准,促进GPU、液冷与存储解决方案的跨品牌兼容。

倍联德GPU解决方案已渗透至医疗、科研、制造等关键领域,形成差异化竞争优势。在医疗影像分析领域,倍联德与多家三甲医院合作开发了基于GPU加速的数字孪生系统。某专科医院部署的G808P-V3工作站搭载双路AMD EPYC 7763处理器与4张RTX 5880显卡,可实时渲染8K分辨率的部位三维模型,配合AI辅助诊断算法,将肺结节检测准确率提升至99.2%,单例CT扫描分析时间从15分钟缩短至90秒。在材料科学领域,倍联德与中科院合作开发的液冷超算工作站集群,采用NVLink互联技术实现16张RTX 6000 Ada显卡的显存共享,使分子动力学模拟的原子数量从100万级提升至10亿级。在锂离子电池电解液研发项目中,该方案将模拟周期从3个月压缩至7天,助力团队快速筛选出性能提升40%的新型配方。
倍联德通过“硬件+软件+服务”的一体化模式,构建起覆盖芯片厂商、ISV及终端用户的开放生态:公司与NVIDIA、英特尔、华为等企业建立联合实验室,共同优化CUDA-X AI加速库与TensorRT推理框架。在2025年AMD行业方案全国大会上,倍联德展出的“Strix Halo”液冷工作站系统,通过集成AMD锐龙AI Max+395处理器与128GB LPDDR5x内存,实现了Llama 3模型推理的毫秒级响应,较前代方案性能提升2.3倍。针对不同规模客户的差异化需求,倍联德提供从标准产品到OEM/ODM的灵活合作模式。例如,为中小实验室设计的Mini-Eve系列工作站,在2U空间内集成2张RTX 4090显卡与全闪存存储,支持Stable Diffusion文生图任务的批量处理,而成本只为同类产品的60%。低功耗广域网(LPWAN)设备通过云边端协同,在断网环境下仍能维持基础物联网服务运行。

倍联德通过“硬件+软件+服务”的一体化模式,构建起覆盖芯片厂商、ISV及终端用户的开放生态:公司与英特尔、英伟达、华为等企业建立联合实验室,共同优化存储协议与加速库。例如,其存储系统深度适配NVIDIA Magnum IO框架,使AI训练任务的数据加载速度提升3倍;与华为合作开发的NoF+存储网络解决方案,已应用于30余家金融机构及交通企业。针对不同规模客户的差异化需求,倍联德提供从标准产品到OEM/ODM的灵活合作模式。例如,为中小社区设计的Mini-Eve系列工作站,在2U空间内集成2张RTX 4090显卡与全闪存存储,支持Stable Diffusion文生图任务的批量处理,而成本只为同类产品的60%。工业质检场景中,边缘设备完成缺陷检测后,将结果汇总至云端进行质量分析与生产优化。深圳高性能服务器解决方案部署
联邦学习在云边端协同中实现跨域数据隐私保护,使医院、银行等机构可联合建模而不泄露原始数据。云边端协同解决方案提供商
圳市倍联德实业有限公司其重要优势在于:针对DeepSeek、Llama 3等千亿参数大模型的训练与推理需求,倍联德推出G800P系列AI服务器,支持至多10张NVIDIA RTX 6000 Ada或AMD MI300X显卡协同工作,通过NVLink互联技术实现显存共享,使单柜算力密度提升至500PFlops。例如,在香港科技大学的深度学习平台升级项目中,G800P服务器搭载8张RTX 5880 Ada显卡,配合TensorFlow框架优化,将ResNet-152模型的训练时间从72小时压缩至8小时,硬件利用率达98%,而部署成本只为传统方案的1/3。云边端协同解决方案提供商