假设压坯是一个理想的正方体,而粉末颗粒也是一些小立方体,如图3-9所示。当压坯之截面积与高度之比为一定值时,压坯尺寸越大,消耗于克服外摩擦的压力损失便相对减少。由于总的压制压力是消耗于粉末颗粒的位移、变形,以及粉末颗粒的内摩擦和摩擦压力损失。所以对于大的压坯来说,由于压力损失相对减少,因而所需的总的压制压力和单位压制压力也会相应地减少。为了减少因摩擦阻力而产生的压力损失:(1)添加润滑剂;(2)提高模具光洁度和硬度;(3)改进成形的方式如采用双面压制等。粉末冶金工艺包括粉末制备、混合、压制、烧结等步骤,可以实现材料的高度定制化。深圳钛合金粉末冶金优缺点
粉末冶金工艺优缺点分析,齿轮制造有滚齿,铣齿,插齿等等各种工艺,但还有一种齿轮是用金属粉末压出来的,也就是粉末冶金工艺。先来看看有什么不同:粉末冶金工艺详解,粉末冶金齿轮是各种汽车发动机中普遍使用的,虽然在大批量的情况下非常经济实用,不过在其他方面也有待改进的地方。粉末冶金工艺优缺点分析,粉末冶金是用金属粉末(或金属粉末与非金属粉末的混合物)作为原料,经过成形和烧结,制造金属材料、复合材料以及各种类型制品的工艺技术。优点:1.一般粉末冶金齿轮制造工序少。2.用粉末冶金法制造齿轮时,材料利用率可达95%以上。3.粉末冶金齿轮的重复性非常好。因为粉末冶金齿轮是用模具压制成形的,在正常使用条件下,一副模具约可压制几万至几十万件齿轮压坯。4.粉末冶金法可将几个零件一体化制造。5.粉末冶金齿轮的材料密度是可控的。6.在粉末冶金生产中,为便于成形后从压模中脱出压坯,压模工作面的粗糙度都非常好。深圳钛合金粉末冶金优缺点粉末冶金技术的出现,推动了制造业向更高效、更环保的方向发展。
在储氢材料中的应用,固体储氢是较为常见的储存方式,但将粉末冶金技术应用在固体储氢的容器之中并在一定的温度和氢气压力下能够使氢气的储存更加稳定、安全、有效。储氢合金是指在一定温度和氢气压力下能可逆地大量吸收、储存和释放氢气的金属间化合物,储氢机理是氢分子首先吸附在金属表面,再解离成氢原子,然后再进入到金属的晶格中形成氢化物。储氢合金储氢量大、无污染、安全可靠,并且制备技术和工艺相对成熟,是目前应用较为普遍的储氢材料。金属基储氢合金一般有镁基储氢材料、稀土系储氢材料及钛系储氢材料等,对于先进的储氢合金,一般采用机械合金化、氢化燃烧合成和还原扩散法等粉末冶金技术来制备。
常见齿轮加工方式中的装夹系统,粉末冶金是大批量制齿轮的一种方法,而常见的滚齿、插齿等工艺看起来能更好的应对多品种小批量的需求,此时它们的装夹系统就很有讲究了。从普通车加工→滚齿加工→插齿加工→剃齿加工→硬车加工→磨齿加工→珩磨加工→钻孔→内孔磨削→焊接→测量,为这个过程配置合适的装夹系统显得尤为重要。普通车加工,在普通车加工中,齿轮毛胚件通常被夹持在垂直或者水平的车削机床上。对于自动夹持的夹具,绝大多数不需在主轴另一边加装辅助稳定装置。粉末冶金还可以实现对零件表面的特殊处理,如表面喷涂、涂层等,提高了零件的耐磨性和耐腐蚀性。
粉末冶金高温合金,粉末冶金高温合金是以镍为基体,添加有Co、Cr、W、Mo、Al、Ti、Nb、Ta等多种合金元素的一类具有优异的高温强度、抗疲劳和抗热腐蚀等综合性能的合金,是航空发动机涡轮轴、涡轮盘挡板、涡轮盘等关键热端部件的材料,加工主要涉及到粉末制备、热固结成型和热处理等过程。粉末冶金材料在现代工业中的应用越来越广,在取代锻钢件的高密度和高精度的复杂零件的应用中,随着粉末冶金技术的不断进步也取得了快速发展。但是由于后续处理工艺的差异,其物理性能和力学性能还存在着一些缺陷,本文就针对粉末冶金材料的热处理工艺进行简要阐述分析,并分析其影响因素,提出改善工艺的策略。在航空航天领域,粉末冶金技术常用于生产发动机零件、结构件等,满足产品对轻量化和强度高的需求。广州五金粉末冶金价格
粉末冶金可以制造具有良好耐磨性和耐磨损性的金属复合材料,用于摩擦材料和摩擦零件。深圳钛合金粉末冶金优缺点
机械合金化(定义、特点如非平衡相合金粉末抽取),机械合金化:一种通过长时间研磨单质粉末使其成为非结晶质的或弥散增强的合金粉末的制备方法。/是一种通过高能球磨使粉末受反复的变形、冷焊、破碎,制取具有平衡或非平衡相组成的合金粉末或复合粉末的制粉技术。机械合金化粉末并非像金属或合金熔铸后形成的合金材料那样,各组元之间充分达到原子间结合,形成均匀的固溶体或化合物。在大多数情况下,在有限的球磨时间内光使各组元在那些相接触的点、线和面上达到或趋近原子级距离,并且较终得到的只是各组元分布十分均匀的混合物或复合物。当球磨时间非常长时,在某些体系中也可通过固态扩散,使各组元达到原子间结合而形成合金或化合物。深圳钛合金粉末冶金优缺点