看点1、AI大模型应用普及度高,算力与场景部署呈现多元化•应用渗透加速:的企业已接触AI大模型,2022年(ChatGPT发布)与2024年(DeepSeek发布)成为企业接入高峰期,分别占比、。•算力部署分化:企业选择本地算力,依赖云端,采购云上服务,但企业尚未部署任何算力资源。•应用架构分层:采用集团集中式管理,混合式部署,分布式架构,*企业无规范策略。看点2、效率提升为**价值,但AI落地效果与预期存在差距•业务影响***:企业反馈效率提升(流程自动化缩短超50%时间),实现成本降低,创新能力增强。•效果评价分化:企业认为AI效果“一般”,*认为“很好”,认为“投资性价比低”。•头部模型领跑:DeepSeek()、豆包()、文心一言()、ChatGPT()成为企业使用率**高的四大模型。看点3、安全风险集中爆发,数据与合规成企业首要担忧•现实风险凸显:企业遭遇AI生成内容事实性错误,面临模型被恶意利用(如钓鱼邮件),出现系统集成漏洞。•TOP3风险预警:数据泄露()、合规风险()、数据质量与幻觉()成企业**关注的安全痛点。•合规需求明确:**《人工智能安全治理框架》()、《生成式人工智能服务管理暂行办法》()、GB/T45288系列标准。银行信息安全需强化账户交易安全防护,采用多因素认证、实时风控模型,抵御电信网络诈骗与账户盗用风险。深圳个人信息安全管理

三)委托处理个人信息、向其他个人信息处理者提供个人信息、公开个人信息;(四)向境外提供个人信息;(五)其他对个**益有重大影响的个人信息处理活动。附件《个人信息保护合规审计指引》原文参考:十一、个人信息处理者在公共场所安装图像收集、个人身份识别设备的,应当重点对其安装图像收集、个人信息身份识别设备的合法性及所收集个人信息的用途进行审查。审查内容包括但不限于:(一)是否为维护公共安全所必需,是否为商业目的处理所收集的个人信息;(二)是否设置了***的提示标识;(三)个人信息处理者所收集的个人图像、身份识别信息用于维护公共安全以外用途的,是否取得个人单独同意。《个人信息保护法》对应解读:第二十六条在公共场所安装图像采集、个人身份识别设备,应当为维护公共安全所必需,遵守**有关规定,并设置***的提示标识。所收集的个人图像、身份识别信息只能用于维护公共安全的目的,不得用于其他目的;取得个人单独同意的除外。附件《个人信息保护合规审计指引》原文参考:十二、对个人信息处理者处理已公开的个人信息进行合规审计的,应当重点审查个人信息处理者是否存在下列违法违规行为:。上海金融信息安全介绍上海信息安全建设依托城市数字化转型战略,构建跨部门协同防御体系,提升关键信息基础设施安全防护能力。

对数据处理活动进行深入分析,识别数据生命周期每个环节可能存在的风险点。同时,对现有的技术防护措施进行核查,检查这些措施是否能够有效保障数据安全,是否存在漏洞或薄弱环节。第三阶段:风险识别——精细定位病灶依据标准要求,风险识别阶段需重点聚焦四大领域,精细定位潜在的数据安全风险。在数据安全管理方面,审查企业的制度体系是否健全,**架构是否合理,人员管理是否规范。在数据处理活动安全方面,对数据全生命周期各环节进行细致排查,如传输过程中是否采取了有效的加密措施等。在数据安全技术方面,检查网络安全防护是否到位,访问控制是否严格等。在个人信息保护方面,审查企业是否遵循处理原则,是否充分履行告知同意义务等内容。具体评估内容看以下图片:第四阶段:风险分析与评价——科学诊断风险分析与评价阶段是对识别出的风险进行科学诊断的重要环节。首**行危害程度分析,评估风险一旦发生可能对数据的保密性、完整性、可用性造成的影响程度。其次进行发生可能性评估,综合考虑威胁出现的频率以及企业现有的防护能力,判断风险发生的概率。在此基础上,划分风险等级,将风险划分为重大、高、中、低、轻微五级。
安全赋能AI企业应用三大需求:企业用户对AI大模型安全产品或服务的需求,当前**关注的**项需求分别是大模型安全测评工具,占比,外部AI大模型在企业内使用的安全解决方案,占比,以及AI的供应链安全,占比。AI安全相关预算尚处爆发前期:调查显示,目前企业已有明确AI安全预算的占比*,正在评估需求的占比,计划未来纳入预算的占比,需求优先级较低的占比。企业开始将传统的安全采购需求向AI安全方向偏移。公开征集:AI安全大框架,产业能力全景图本地调查在风险聚焦、用户需求和能力提供方面,我们规划设计并率先推出AI安全产业链大框架,其覆盖范围包括:•基础层:算力安全、数据安全、算法安全。•技术层:模型安全、智能体安全、开发平台安全。•应用层:“AI+业务”安全(金融、医疗、交通等)、AI伦理与合规。基于上述框架,我们提出AI安全能力/产品全景图:包含AI基础设施安全、平台安全、应用安全等12大模块。总体上看,企业AI应用已从“是否采用”转向“如何安全**采用”。尽管当前AI落地效果未达预期,但企业的持续投资表明,AI仍是业务变革的**驱动力。安在新媒体呼吁行业共建AI安全生态,推动技术创新与风险防控协同发展,助力AI在安全可控轨道上**前行。这些看似微小的操作,一旦被监管部门查处,轻则面临数金额的罚款,重则损害品牌信誉、流失重要用户。

安在新媒体会适时推播以“AI大模型安全”为主题的线上直播,届时,我们会邀请各方**(甲方、厂商、业界等),以圆桌方式对谈讨论,并在安在视频号等各直播平台播出推广。计划3:安在沙龙·AI大模型安全线下研讨会作为各项活动成果集中展示和价值对接的体现(尤其是调查报告正式发布和解读),我们拟于2025年7月起,在上海、深圳/广州、北京等地,举办一系列“企业AI大模型安全主题研讨会”。届时,邀请各行各业有AI大模型安全实践经验和特别关注的用户**(本地调查过程中已有充分的需求摸底),和可助企业AI大模型安全落地的网安厂商、业界**,共同参与线下交流。计划4:诸子笔会·AI安全应用场景及解决方案典型案例征集依托安在新媒体内容策划、**、创作、输出和推广能力,延续往年诸子笔会基调特色,我们会推出新一季诸子笔会征文活动,以AI大模型安全为主题,诚征各界真知灼见、实践经验和脑力成果,包括:应用场景典型案例(企业用户在AI大模型安全方面的应用场景和**佳实践),解决方案典型案例(厂商在AI大模型安全相关领域所推创新解决方案及典型案例)。欢迎各界有识之士原创投稿(3000~5000字/篇),或以访谈方式灵活分享(向安在提案提议。审计须覆盖数据处理全生命周期,采用文档审阅、系统测试、人员访谈、数据流分析等方法,确保风险无遗漏。江苏企业信息安全培训
而合规审计的重要价值,就是提前 “扫描” 这些风险点,让企业从 “被动整改” 转向 “主动预防”。深圳个人信息安全管理
需强化企业数据安全防护体系,防范**信息在大模型应用场景下的流失;C端用户尤其需关注老人与孩子等群体,其在使用大模型时可能因认知差异泄露银行卡密码等个人隐私或家庭敏感数据。总体而言,随着大模型普及,其输入输出环节的数据安全将在**竞争、企业数据权保护及个人隐私防护等层面引发系统性变化,需构建多主体协同的安全治理体系。一句话总结:AI安全的本质内核是数据安全治理,因此需以AI技术赋能数据要素价值释放,通过驱动社会生产力的范式革新,为新一轮产业变革注入**动能。这一进程既需构建覆盖企业数据资产、个人信息权益、**数字**的全维度防护体系,更要以数据安全合规为基石,推动数字经济与实体经济深度融合,**终实现技术创新与安全保障的协同发展,夯实社会数字化转型的可持续发展根基。汤加贝:今年年初,以DS为**的AI技术与哪吒国漫电影呈现出相似的爆发态势:二者均以“突然爆红”的姿态引发**参与热潮,在资本助推下快速实现从国内市场向**舞台的拓展,且均因热度高涨而不缺投资关注。如同哪吒电影在国内创下152亿票房奇迹后,海外市场*收获5亿票房、远低于200亿预期的落差,当前AI技术的爆发式增长亦需警惕“狂热背后的冷静期考验”。深圳个人信息安全管理
备案结果分为通过和不通过两种,省级网信部门会在查验结束后及时通知个人信息处理者。对于材料齐全、符合合规要求的,将发放备案编号,备案正式生效,个人信息处理者可凭备案编号开展个人信息出境活动;对于材料不齐全、不符合规范或存在合规问题的,将出具备案未成功通知,明确告知未通过原因及需补充完善的内容。个人信息处理者需在收到通知后10个工作日内补充完善材料并重新提交,逾期未补充的,省级网信部门可终止本次备案程序,需重新启动备案申请流程。人工智能安全风险评估方法应融合算法合规性校验、数据隐私保护及伦理风险研判三大维度。北京个人信息安全介绍 金融行业数据安全评估流程以分类分级为基础,涵盖事前评估、事...