在数字化浪潮席卷而来的***,数据安全无疑是各行各业的“心头大患”。面对这一严峻挑战,如何实现科学有效的数据安全治理,已然成为众多企业亟待解决的关键课题,尤其是承载着**经济命脉的金融行业。金融行业关乎民生,其数据安全也与大众息息相关。因此,无论是出于**战略的考量,还是行业自律的要求,金融机构都肩负着维护数据安全、保障信息安全的神圣使命。此外,在数字化背景下,金融业务所涉及的数据也越来越宽泛,提高数据安全治理能力不仅能够保障金融业务的稳定,还能在**发生时,**大程度减少损失,维护金融市场的稳定与繁荣。据威胁猎人发布的《2023年数据泄露风险年度报告》显示,金融成为2023年公民个人信息泄露事件数量**多的行业。这表明黑灰产对金融行业的关注度不断攀升,金融机构所面临的威胁也日益凸显。而在今年3月26日**金融监管总局开展的银行保险机构侵害个人信息权益乱象专项整治行动中,则发现了银行保险机构在个人信息处理的具体执行层面存在诸多问题或**,这些问题或**影响了高达1556万人次的消费者。因此,数据,以及数据安全成为金融行业面临的一大挑战,成为悬在其头顶的一把“达摩克利斯之剑”。 划分风险等级,将风险划分为重大、高、中、低、轻微五级,以便企业能够根据风险等级制定相应的应对策略。南京网络信息安全

overflow-wrap:break-word!重要;颜色:rgba(0,0,0,);font-family:system-ui,-apple-system,BlinkMacSystemFont,“HelveticaNeue”,“PingFangSC”,“HiraginoSansGB”,“MicrosoftYaHeiUI”,“MicrosoftYaHei”,Arial,sans-serif;字体样式:普通;font-variant-ligatures:普通;font-variant-caps:normal;字母间距:“>***重要;overflow-wrap:break-word!重要;字体大小:14px;>***重要;overflow-wrap:break-word!important;”>***重要;overflow-wrap:break-word!重要;字体大小:14px;>***重要;overflow-wrap:break-word!important;”>***重要;overflow-wrap:break-word!important;”href=“***”>003关于开展个人信息保护负责人信息报送工作的公告***mportant;overflow-wrap:break-word!important;”>***重要;overflow-wrap:break-word!important;”>***重要;overflow-wrap:break-word!important。 江苏金融信息安全介绍数据安全风险评估的落地不仅是合规要求,更是企业构建核心竞争力的关键。

网数安全|关注安言011人工智能应用与挑战人工智能(AI)是一门融合了计算机科学、统计学、脑神经学和社会科学的综合性学科,旨在赋予计算机类似人类的智能和能力,例如识别、认知、分类和决策。近年来,“算力×数据×算法”的协同进化,使得计算机视觉、语音识别、自然语言处理、多模态等技术领域取得了重大突破,推动了AI从实验室走向产业**的进程。在医疗领域,通过对海量数据的深入分析,人工智能技术已从辅助医生进行影像分析和**诊断,拓展至提供医疗决策支持,乃至预测蛋白质结构、助力**发现,***加快了**研究与开发的进程。在金融领域,人工智能协助机构从海量数据中分析客户需求,如**、信用及咨询等信息,开发个性化服务,提升服务质量,辅助风险控制,减少金融**。在交通领域,通过对海量城市交通数据的分析,人工智能技术能优化线路规划,实施交通预测,使辅助驾驶功能更加智能化且更安全。人工智能几乎在每个行业都展现出巨大的潜力,以下是一些典型行业的应用示例。今年,DeepSeek的迅速崛起,进一步推动了国内人工智能应用的爆发式增长。人工智能在蓬勃发展的同时,也带来了技术、伦理、社会及安全层面的多重风险。
重要;overflow-wrap:break-word!重要;clear:两者;**小高度:1em;visibility:visible;”>***重要;overflow-wrap:break-word!重要;visibility:visible;”>网***重要;overflow-wrap:break-word!重要;visibility:visible;”>数***重要;overflow-wrap:break-word!重要;visibility:visible;”>安全|关注安言数据是新时代的石油,更是企业**资产。然而,面对日益严峻的安全威胁和不断升级的监管要求(如《数据安全法》、《个人信息保护法》),您的企业是否正面临这些困扰?▶投入了大量安全资源,却说不清防护水平到底如何?▶担心数据泄露风险,却不知从何下手系统加固?▶面对合规审计要求,缺乏有力的证明依据?▶数据安全管理碎片化,难以形成合力?别担心!让的DSMM咨询服务为您拨云见日!一、什么是DSMM?DSMM(DataSecurityMaturityModel,数据安全成熟度模型)是我国**的数据安全建设与管理评估框架。它如同一个精密的“标尺”和清晰的“路线图”,帮助企业:•精细评估现状:系统性地从**建设、制度流程、技术工具、人员能力四大维度,***衡量您的数据安全防护水平,精细定位短板与风险点。•明确提升方向:将数据安全能力划分为5个成熟度等级。 OWASP自2023年起持续发布AI应用风险Top10榜单,并于今年3月27日更名为OWASP Gen AI安全项目。

他们会迅速丢盔卸甲,大量敏感数据、隐私数据被泄露,企业业务无法开展,然后被监管点名,相关负责人要么锒铛入狱,要么被行业除名,企业名声也一落千丈。那么,怎么避免“不**”的安全,以及如何判断一个企业的安全建设是否“不**”呢?通常情况下,安全“不**”的企业有以下具体表现:1.安全预算投入不合理。理论上,企业会制定短期、中期及长期的网络安全支出规划,以确保安全建设的连续性。但安全“不**”的企业会在发生安全事件后以及HW期间临时增加人力物力,或是采用安服等外部能力来短暂地提升安全能力。不合理的预算投入不仅无法真正提升安全能力,有时反而会导致预算浪费,支出相对更多等情况。2.缺少常态化可持续的安全运营机制。现阶段,安全运营是企业实现安全的重中之重。但部分企业缺乏运营思维,对于安全的重视程度不高。这会造成安全工具各自为政,企业安全无法连成片,看似覆盖了大量的暴露面,实际却有大量漏洞隐藏其中,更易导致安全**的发生。3.安全意识薄弱。安全意识是企业安全建设的一道分水岭,做得好的企业安全能力通常较好,做得差的企业往往也会面临大量的安全威胁。特别是HW期间,企业员工意识薄弱,就会因为钓鱼邮件、社工等成为突破口。 同时及时发现并解决潜在问题,提升组织的AI风险管理能力。北京网络信息安全设计
对现有的技术防护措施进行核查,检查这些措施是否能够有效保障数据安全,是否存在漏洞或薄弱环节。南京网络信息安全
信息安全|关注安言HW在即,许多企业也开始积极地准备HW期间的相关事宜。对于安全成熟度较高的企业来说,其内部往往会多次举办攻防演练,在面对HW时显得较为“淡定”。但对于那些安全能力较差,却又被纳入HW行动的企业来说,参与HW可能会暴露出很多问题,相关负责人也会“压力山大”。其中还包含一种企业,它们的安全支出只在HW期间。你会发现,那些平时不怎么关心安全的领导,在HW期间突然掏出大量预算招兵买马,还会紧急宣贯安全教育,颇有一种大考前临时抱佛脚的感觉。实际上,任何事情、任何工作都很难一蹴而就,就像高考需要学生的积累一样,直到临考前才拿出课本学习的学生们很少能取得好成绩。企业也是如此,平时不注重安全,HW来了才开始“临时抱佛脚”,自然也不可能在HW中取得收获。更何况,这种“不**”的安全本身也会带来一系列的风险。安全“不**”的表现和影响仙侠小说中总会有这样的人物形象,他们基础薄弱,练功懈怠,只知道用大把大把的***催化自己的“功力”,这样的人平日里可能看不出内里虚空,直到真正面对危险时才发现自己一无是处。那些安全“不**”的企业也是如此,平时不注重安全,只知道应付HW的**终结果就是,当攻击者真的入侵时。 南京网络信息安全
金融机构数据分类分级需动态调整,适配业务变化与监管要求。银行保险机构需按数据重要性与敏感程度,将数据划分为核心数据、重要数据、一般数据,其中一般数据可细分为敏感数据与其他数据。分类分级需建立动态调整审批机制,当数据业务属性、重要程度、危害程度发生变化时,及时调整安全级别与防护措施。某商业银行针对新增的数字人民币业务,及时将相关交易数据、用户信息纳入核心数据范畴,升级加密存储、访问控制等防护措施。分类分级结果需应用于数据全生命周期管理,不同等级数据采取差异化防护策略,核心数据实现100%覆盖评估与管控,一般数据合理管控成本,平衡安全与效率。企业网络安全培训课程需分层设计,针对高管、技术人员及普通...