根据包钢薄板厂宽厚板2号加热炉的高温烟气参数,采用多级轴流ORC透平发电机组对该加热炉的高温烟气热能进行回收发电,机组发电工艺为:高温烟气与热水换热,再将热水引入蒸发器与有机工质R245fa换热,产生R245fa蒸汽推动ORC膨胀机膨胀做功并带动发电机发电,膨胀机膨胀后的乏汽进入蒸发式冷凝器冷凝成液态,经工质泵进入预热器预热后进入蒸发器再次蒸发成气态。该机组采用高效轴流反动式透平膨胀机和同步发电机,整个机组采用集散设计,透平膨胀机的设计技术较成熟,单机能实现小功率到大功率的任意设计。国内ORC低温余热发电技术发展空间很大,仍有多项关键技术需要解决。orc余热发电制作费用
ORC余热发电系统结构本身的优势:可采用螺杆膨胀机替代汽轮机,其结构相对传统汽轮机简单得多,额定功率小,其适用作为低焓能源动力利用的动力机,因此对有机工质蒸汽做功更适用。鉴于目前螺杆膨胀机还未普及,那么即使使用汽轮机,因有机工质蒸汽比容、焓降小,故所需汽轮机的尺寸(特别是汽轮机末级叶片的高度减小)、排气管道尺寸及空冷冷凝器中的管道直径均较小。与水蒸气相比,由于有机工质的声速低,在低叶片速度时,能获得有利的空气动力配合,在50Hz时能产生较高的汽轮机效率,不需要装齿轮箱。由于转速低,因此噪声也小。中低温烟气ORC低温发电机组厂家供货ORC能确保余热发电过程的可靠及经济运行。
有机朗肯循环系统发电系统内部参数与外界环境紧密相关,热源参数的变化,冷却水温度的变化都会使得系统内部各个点参数改变,从而导致系统长期运行在非额定工况热效率低.该文以循环工质为R245fa的有机朗肯循环系统作为研究对象,通过建立蒸发器和冷凝器换热模型,得出有机朗肯循环系统在不同热源温度,不同冷却水温度下的更佳蒸发温度,凝结温度变化情况,从而获得蒸发温度,凝结温度与热源温度,冷却水温度之间的函数关系.在实际有机朗肯循环系统余热发电工程中,存在着很多不稳定因素,因此对有机朗肯循环系统变工况特性分析是非常有必要的,对于提高系统整体性能具有指导性意义。
随着科学技术不断发展以及能源价格的不断攀升,将余热资源品位提高再利用的方式,特别是将工业过程中产生的低品位热能资源转换为方便、灵活的电能的回收方式受到普遍关注。有机朗肯循环系统以其良好的机动性及对于维护保养的要求比较低等优点,将其整合到能源系统发电,可以实现用低品位能源(废热)提供高品位能源(电能),减轻电力负担,提高总的发电效率及发电量。在相同输出的条件下,减少了二氧化碳等污染物的排放,有利于环境保护。有机朗肯循环低温余热发电技术为有效解决大量低温余热资源回收问题提供了选择。ORC能确保余热发电过程的安全。
动态透平效率对有机朗肯循环系统性能的影响:向心透平效率随运行参数的变化及工质种类的不同有较大差别,引入向心透平一维分析模型来计算透平效率,分析蒸发温度与冷凝温度对透平效率的影响,比较固定透平效率与动态透平效率有机朗肯循环(ORC)系统的热力性能与经济性能。采用非支配解排序遗传算法(NSGA-Ⅱ)优化ORC系统筛选出更优工质,确定更佳蒸发温度与冷凝温度。同时比较了不同热源温度下固定透平效率和动态透平效率ORC系统的更佳运行参数,分析了透平效率随热源温度的变化。ORC发电机组的装机容量和对电网的功率较大。长春中低温烟气ORC低温发电机
在ORC发电系统中换热器类型的选用对机组效率与经济技术性影响较大。orc余热发电制作费用
国外对于低温余热的研究开始于20世纪70年代,其中对ORC系统进行研究的更早,早在20世纪20年代初期,就有人开始研究使用苯醚为工质的有机朗肯循环系统。通过对国内外大部分ORC系统设备生产商及相应的技术参数的分析和研究,发现ORC系统比较适合用于300℃以下的余热热源.工业余热资源回收潜力和余热发电环保效应巨大,美国公司曾经建造了利用炼油厂为余热(110℃)的ORC系统,该系统运用单级向心透平,有机工质为R113,输出功率约为1174KW。美国公司和日本曾建造了以工业废热为热源的ORC系统,更终取得了良好的社会和经济效益。orc余热发电制作费用