有机朗肯循环(ORC)在中低温热能回收领域有着普遍的应用,但在中低温范围内很多热源工况存在较强的波动,如太阳热能,工业或内燃机烟气余热等。ORC系统在变工况热源驱动下可能会产生如下问题:系统吸热过多导致系统内温度、压力过高,工质裂解;系统吸热不足而导致膨胀机液击,系统无法正常运行。因此,研究ORC系统在变工况热源下的动态运行情况变得十分重要。以ORC系统在变工况热源下的动态特性为主要研究对象,采用实验研究与仿真模拟相结合的研究方法。有机朗肯循环发电,可用于太阳能发电。黑龙江orc低温余热发电
ORC余热发电系统结构本身的优势:系统本身使用导热油作为中间换热工质,因为导热油在300的条件下仍不汽化而保持常压,此时的水蒸气饱和压力已高达8.5MPa。300以下,用导热油代替传统的热载体水蒸气,就能以低压管道系统代替高压管道系统,降低投资。此外导热油还具有传热均匀,热稳定性好以及优良的导热特性。导热油对普通的碳钢设备和管道基本上无腐蚀作用,不需要采用类似蒸汽系统的给水脱盐、除氧等复杂的处理过程,因此具有系统简单输送方便等优点。因此用导热油作为工质的机组传热效率高。230kwORC低温发电机组订做商家ORC发电机组的装机容量和对电网的冲击较小。
利用有机朗肯循环(ORC)将热能转化为机械能是一种利用低品位热能的有效手段。ORC系统的典型设计过程通常包括:工质选择、循环结构的选择、运行参数的优化、部件选型和尺寸设计,这是一个非常耗时且高度依赖于设计人员经验的过程,在大多数情况下很难实现更优设计。近年来,人工智能这种新兴的技术被工程界普遍采用,用于解决传统手段难以解决的问题。在能源系统的设计中,研究人员也在尝试利用这种新工具去解决ORC系统设计中的难点问题。目前,有关人工智能辅助ORC系统设计的研究比较零散,大多数工作仍属于尝试性的工作,不能为后续研究提供很好的指导。因此,本文对人工智能技术在ORC系统设计中的较新进展进行了文献综述,旨在厘清人工智能技术在ORC系统设计中的研究领域,并为人工智能技术更好地辅助ORC系统设计提供指导。
在能源危机、气候变化的时代背景下,有机朗肯循环(ORC)作为一种低温余热资源利用的有效途径,得到普遍的研究及工业应用。混合工质作为该领域的研究热点,在能否提高ORC循环性能等问题上观点截然相悖。本文从工作原理、循环性能评价、工质筛选和工艺优化等方面对混合工质ORC展开分析及研究,以探究争议的主要及解决途径。研究结果表明:混合工质ORC的争议主要源于缺乏统一的优化及评价基准,普遍采用的以尽可能大的相变温度滑移为约束条件,有可能降低混合工质性能;混合工质的组分调控特性表现出巨大潜力,结合组分调控的工艺设计、相变温度滑移的定量优化、实验及中试是未来应重点关注的研究方向。有机朗肯循环发电技术不需设置真空维持系统。
工质泵是ORC低温余热发电系统的基本组成部分,是将冷凝器的低温低压液体有机工质经绝热增压后,高压输送到蒸发器入口的装置。作为一种成熟的产品,市场上有多种工质泵。研究发现,以下泵适用于ORC低温余热发电系统:液压隔膜泵,具有压力高、适用于危险化学介质、维护简单等特点;立式离心泵采用变频调速、机械密封;多级离心泵可实现更高的扬程和设定压力;多级离心泵是在离心泵级内安装两台或两台以上具有相同功能的离心泵,相对于活塞泵等往复泵能输送更多的流量。有机朗肯循环发电,提高能源利用效率。黑龙江orc低温余热发电
ORC发电机组的装机容量和对电网的功率较大。黑龙江orc低温余热发电
在世界范围内,超过九成的电能产生都通过以水和水蒸气为循环工质的朗肯循环产生,其主要包括定压吸热、等熵膨胀、等压冷凝和等熵压缩等四个过程。当热源温度低于370℃时,例如余热及地热等,以水为工质的传统朗肯循环已经不能对其进行有效的利用。在这种背景下,有机朗肯循环逐渐受到研究者的重视。有机朗肯循环(OrganicRankineCycle,ORC)采用低沸点有机物为工质(如R113,R123等),具有使用寿命长、维护费用低和自动化程度高等特点,使得朗肯循环能够从低品位的热源中吸热,因此特别适合中低温余热的利用。黑龙江orc低温余热发电
上海能环实业有限公司是以提供高速磁浮ORC发电产品,磁浮蒸汽差压发电产品,磁浮鼓风机,余热发电为主的有限责任公司(自然),公司成立于2009-09-09,旗下能源岛,已经具有一定的业内水平。公司承担并建设完成能源多项重点项目,取得了明显的社会和经济效益。产品已销往多个国家和地区,被国内外众多企业和客户所认可。