公司官网热仿真案例--段落节选33:(多组分扩散和反应/第二部分/热解气扩散和反应模拟B节)生物质颗粒热解以后的混合气体主要包括:CO、CO2、H2、CH4、H2O及生物质焦油等,成分极为复杂,混合气体可拟合为一个总体分子式Cn1 Hn2 On3 (具体比例数据此处略去)。本案例对混合气体燃料以总包、单步、不可逆反应的形式,流体仿真模拟考虑涡耗散影响的湍流有限速率燃烧反应。概念性的反应方程式如下:Cn1 Hn2 On3 +(k1)O2 → (k2)CO2 +(k3)H2O。以下各图为cfd仿真结果。其中,从<气体速度场>可见,助燃空气的喷射群尾迹,在各截面上表现为明显的高速点阵。【案例段落、图片均为平台随机抽取,详情请点击我司官网】远筑流固仿真客户行业分布很广,涵盖水处理、固废、风机、煤炭、仪表、高校、建材、信息等十余个行业。排名靠前的流固耦合仿真机构
公司官网热仿真案例--段落节选43:(热流固耦合/第1部分/弯曲方管单向热流固耦合模拟C节) 2. 开启电加热后的热-流-固耦合力学仿真模拟结果-下图是紫色管道区域以某一额定功率全域加热后的流体温度分布。可见,在紫色管道区域内,液体随流动温度逐渐升高,但因为流速的不均匀温差明显;在低流速的涡流区,对流散热效率低,温度较高。相对应的,后面的<管道内壁面-流体温度荷载分布>中,管壁的温度极高区,就在第1个弯头的外转角侧,接近250℃。从下图的管壁应力流体仿真结果图可见,在流体压力和壁面温度差双重荷载作用下,极大的应力点位于第1个弯头外旋侧入口处的倒角点上,范式应力值301 MPa。从后图的管壁位移分布可见,极大的位移点位于上端面右上角,位移值约4mm;上端面整体的位移趋势是由原始位置向右上方移动,同时顺时针转动。【案例段落、图片均为平台随机抽取,详情请点击我司官网】cfd热仿真模拟融合流体模拟与结构有限元,远筑流固仿真助您优化阀门、风机等的流致结构安全问题。

公司官网cfd仿真案例--段落节选21:(流场问题的诊断与优化/第1部分/流场综合优化C节)本cfd分析案例所设计的5组导流板中,竖直上升烟道的那4组布置上属于行业常见构型,流体仿真优化主要是调整它们的布置尺寸、片数和转角等。末尾反应器顶部那1组导流板是烟气进催化剂层前的末尾一道关卡,对达成后面流场优化效果极为关键,而我司“创新”设计的“3小直片”式导流板,与行业的常见做法不同,简洁而高效(不同项目设定不同的布置尺寸和转角)。我司已将该型“3小直片”式导流板应用于多个脱硝优化项目,实际运行效果良好。另外,我司也将该型脱销导流板设计申请了“实用新型专利”,并于2022年获批通过。【案例段落、图片均为平台随机抽取,详情请点击我司官网】
公司官网流体仿真案例--段落节选32:(多组分扩散和反应/第二部分/热解气扩散和反应模拟A节)本案例热仿真的内容,是一型生物质热解炉内各种气体析出/注入、混合和燃烧反应的过程。设备底部为生物质颗粒的堆积料层区,料层区上表面为单独划定的气体薄层区,顶部为燃烧区, 右上为气体出口。示意图见下图:整个设备中包括以下4类气体源:(1) 料层区颗粒热解,并向上于整个气体薄层区段析出有机混合热解气;(2) 气体薄层区左段外加的热解用空气(常温);(3) 气体薄层区右段外加的碳化用水蒸气(大于100℃);(4) 燃烧区喷嘴群外加的助燃用空气(常温)。【案例段落、图片均为平台随机抽取,详情请点击我司官网】远筑流固仿真依托成熟CFD应用技术,为您提供准确的热仿真解决方案。

我们的技术宗旨,首先是要“审慎”-针对"量"的准确性需要建立多重核查机制。在流体仿真全流程中,从几何建模到参数设定涉及大量数据输入环节,包括结构尺寸、材料属性以及边界条件等关键参数,必须通过多人交叉验证的方式杜绝基础性数据错误;其次是要“准确”-在涉及"质"的关键问题时,应避免随意简化处理。以多相流cfd模拟为例,相间耦合作用是否纳入考量,会因工艺参数差异导致完全不同的误差表现,必须结合具体工况审慎评估,不可草率采用非耦合假设;再次是要“可信”-工程实践中建议采取高于基准的设计标准。以结构件强度优化为例,虽然行业规范已明确极低安全系数要求,但为确保产品可靠性,应当将安全系数提升至超出规范限定值一定比例的水平,从而建立额外的安全保障;末尾是要“稳健”-在cfd仿真优化设计时应当优先经过验证的常规方案。面对导流结构与整流装置的多种配置可能性,建议优先选用行业普遍采用的技术路线,这样既能有效控制工程风险,又便于后续的制造环节选型实施。相比物理实验,远筑流固仿真通过cfd仿真为您节省研发成本,缩短分析周期,效率倍增。热仿真ansys
基于可靠热仿真应用经验,远筑流固仿真预测流动、传热、化学反应现象。排名靠前的流固耦合仿真机构
公司官网流体仿真案例--段落节选11:(更接近真实涡流的湍流/第三部分/管内障碍物绕流的大涡模拟D节)下面的视频,是图(12)随时间动态变化的过程:下图(13)的流速图,是对图(12)的颜色比例尺缩小了显示范围,以方便观察近入口段区域流速脉动情况。由这些cfd模拟结果可见,在进入绕流干扰区域之前,前面入口段的湍流脉动,壁面比中间内核区明显更强一些。前面我们看到的cfd仿真涡流分布样态结果,都是在平面上的二维样态,而下图(14)是湍流到达小方管后旋涡加强的全流域、整体三维形态分布。它是以瞬态流速梯度张量的第二不变量为判别标准的一个等值面,面上的点具有相同的刚性旋转强度(去除了剪切旋转的成分)。【案例段落、图片均为平台随机抽取,详情请点击我司官网】排名靠前的流固耦合仿真机构
杭州远筑流体技术有限公司,是一家专业从事以流体计算为主、兼顾其它多物理场耦合仿真的技术服务型公司,我们期待为各类科研、工业和工程方向客户,提供高性价比的流体仿真项目模拟和仿真培训服务。本公司成立于2014年,在硬件上配备有良好的高性能计算备,主要技术骨干拥有15年以上行业从业经验,并能紧跟行业的技术革新趋势。我司在2022年获得省科技厅颁发的“浙江省科技型中小企业”资格证书。我们擅长的、且在行业较有难度的技术项目包括:湍流大涡模拟、非常规问题二次开发、流场诊断与优化、多相流模拟和动态流固耦合分析等。我们的重点业绩包括:与中国船舶重工集团、中国电子工程设计研究院、中节能集团、国家电力投资集团、中国核工业集团、中国中车集团等多家央企集团的直属单位达成项目合作;通过长期流场优化积累技术手段并获得实用新型专利2项。