AIGC技术与应用近期,短视频平台上火爆的“AI绘画”,在各大科技平台上刷屏的智能聊天软件ChatGPT,引起了人们普遍关注。人工智能潜力再次被证明,而这两个概念均来自同一个领域:AIGC。AIGC到底是什么?为什么如此引人关注?AIGC能产生什么样的应用价值?本文将重点关注三个方面:1、AIGC中心技术与原理2、AIGC典型应用场景3、AIGC落地产品形态。一、AIGC是什么?AIGC全称为AI-GeneratedContent,直译:人工智能内容生成。即采用人工智能技术来自动生产内容。那么,AIGC采用了什么人工智能技术?可生成什么内容?对以上两个问题进行回答,首先,从技术层面AIGC可分为三个层次,分别为:1、智能数字内容孪生:简单的说,将数字内容从一个维度映射到另一个维度。与生成有什么关系呢?因为另一个维度内容不存在所以需要生成。内容孪生主要分为内容的增强与转译。增强即对数字内容修复、去噪、细节增强等。转译即对数字内容转换如翻译等。该技术旨在将现实世界中的内容进行智能增强与智能转译,更好的完成现实世界到数字世界映射。例如,我们拍摄了一张低分辨率的图片,通过智能增强中的图像超分可对低分辨率进行放大,同时增强图像的细节信息,生成高清图。再比如。 他请他们到 VERMONT参加 " DARTMOUTH人工智能夏季研究会".从那时起,这个领域被命名为 "人工智能".三明bilibiliAIGC费用
在自然语言处理技术发展之前,人类只能通过一些固定模式的指令来与计算机进行沟通,这对于人工智能的发展是一个重大的突破。自然语言处理技术可以追溯到1950年,当时图灵发表了一篇论文,提出了「图灵测试」的概念作为判断智能的条件。这一测试包含了自动语意翻译和自然语言生成。自然语言处理技术可以分为两个中心任务:自动语音识别和自然语言生成。自动语音识别是将语音信号转换为文字,而自然语言生成则是将结构化数据转换为自然语言文本。随着AI技术的不断发展,人工智能已经可以通过自然语言处理技术和扩散模型(DiffusionModel)来生成自然语言文本,这使得人工智能不再作为内容创造的辅助工具,而是可以创造生成内容。这种生成式人工智能可以用于自然语言对答、机器翻译、自然语言摘要、聊天机器人等多个领域,为人们提供更加智能化的服务和体验。总之,随着自然语言处理技术和扩散模型的发展,人工智能已经可以创造生成自然语言文本,这将会给我们的生活和工作带来巨大的变革。 福建互联网AIGC好处1956年,被认为是 人工智能之父的JOHN MCCARTHY组织了一次学会将许多对机器智能感兴趣的行家学者聚集在一起。
一.AIGC是什么?AIGC(即ArtificialIntelligenceGeneratedContent),中文译为人工智能生成内容。简单来说,就是以前本来需要人类用思考和创造力才能完成的工作,现在可以利用人工智能技术来替代我们完成。在狭义上,AIGC是指利用AI自动生成内容的生产方式,比如自动写作、自动设计等。在广义上,AIGC是指像人类一样具备生成创造能力的AI技术,它可以基于训练数据和生成算法模型,自主生成创造新的文本、图像、音乐、视频、3D交互内容等各种形式的内容和数据。二.AIGC发展历史AIGC的发展历程可以分成三个阶段:早期萌芽阶段(上世纪50年代至90年代中期),沉淀累积阶段(上世纪90年代至本世纪10年代中期),快速发展阶段(本世纪10年代中期至今)。在早期萌芽阶段(1950s~1990s)由于技术限制,AIGC有限于小范围实验和应用,例如1957年出现了首支电脑创作的音乐作品《依利亚克组曲(IlliacSuite)》。然而在80年代末至90年代中期,由于高成本和难以商业化,AIGC的资本投入有限,因此未能取得许多斐然进展。作者:HOTAIGC链接:源:简书著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。
VisionTransformer(ViT)2020年由谷歌团队提出,将Transformer应用至图像分类任务,此后Transformer开始在CV领域大放异彩。ViT将图片分为14*14的patch,并对每个patch进行线性变换得到固定长度的向量送入Transformer,后续与标准的Transformer处理方式相同。以ViT为基础衍生出了多重精良模型,如SwinTransformer,ViTAETransformer等。ViT通过将人类先验经验知识引入网络结构设计,获得了更快的收敛速度、更低的计算代价、更多的特征尺度、更强的泛化能力,能够更好地学习和编码数据中蕴含的知识,正在成为视觉领域的基础网络架构。以ViT为代替的视觉大模型赋予了AI感知、理解视觉数据的能力,助力AIGC发展。2、预训练大模型虽然过去各种模型层出不穷,但是生成的内容偏简单且质量不高,远不能够满足现实场景中灵活多变以高质量内容生成的要求。预训练大模型的出现使AIGC发生质变,诸多问题得以解决。大模型在CV/NLP/多模态领域成果颇丰,并如下表的经典模型。 从而控制环境温度.这项对反馈 回路的研究重要性在于:WIENER理论上指出所有的智能活动都是反馈机制的结果。
常识知识库(如DOUGLENAT的CYC)就是"SCRUFFY"AI的例子,因为他们必须人工一次编写一个复杂的概念。基于知识大约在1970年出现大容量内存计算机,研究者分别以三个方法开始把知识构造成应用软件。这场“知识革新”促成行家系统的开发与计划,这是旗舰个成功的人工智能软件形式。“知识革新”同时让人们意识到许多简单的人工智能软件可能需要大量的知识。子符号法80年代符号人工智能停滞不前,很多人认为符号系统永远不可能模仿人类所有的认知过程,特别是感知,机器人,机器学习和模式识别。很多研究者开始关注子符号方法解决特定的人工智能问题。自下而上,接口AGENT,嵌入环境(机器人),行为主义,新式AI机器人领域相关的研究者,如RODNEYBROOKS,否定符号人工智能而专注于机器人移动和求生等基本的工程问题。他们的工作再次关注早期控制论研究者的观点,同时提出了在人工智能中使用控制理论。这与认知科学领域中的表征感知论点是一致的:更高的智能需要个体的表征(如移动,感知和形象)。 而从一个语言研究者的角度来看,要让机器与人之间自由交流那是相当困难的,是一个永无答案的问题。。泉州人工智能 AIGC是什么
人类的语言,人类的智能是如此的复杂,以至于我们的研究还并未触及其导向本质的外延部分的边沿。三明bilibiliAIGC费用
AIGC的产品形态有哪些?1、基础层(模型服务)基础层为采用预训练大模型搭建的基础设施。由于开发预训练大模型技术门槛高、投入成本高,因此,该层主要由少数头部企业或研发机构主导。如谷歌、微软、Meta、OpenAI、DeepMind、。基础层的产品形态主要包括两种:一种为通过受控的api接口收取调用费;另一种为基于基础设施开发专业的软件平台收取费用。2、中间层(2B)该层与基础层的特别主要区别在于,中间层不具备开发大模型的能力,但是可基于开源大模型等开源技术进行改进、抽取或模型二次开发。该层为在大模型的基础上开发的场景化、垂直化、定制化的应用模型或工具。在AIGC的应用场景中基于大模型抽取出个性化、定制化的应用模型或工具满足行业需求。如基于开源的StableDiffusion大模型所开发的二次元风格图像生成器,满足特定行业场景需求。中间层的产品形态、商业模式与基础层保持一致,分别为接口调用费与平台软件费。3、应用层(2C)应用层主要基于基础层与中间层开发,面向C端的场景化工具或软件产品。应用层更加关注用户的需求,将AIGC技术切实融入用户需求,实现不同形态、不同功能的产品落地。可以通过网页、小程序、群聊、app等不同的载体呈现。三明bilibiliAIGC费用
认知模拟经济学家赫伯特·西蒙和艾伦·纽厄尔研究人类问题解决能力和尝试将其形式化,同时他们...
【详情】采用后一种方法时,编程者要为每一角色设计一个智能系统(一个模块)来进行控制,这个智能系统...
【详情】例如,在国际贸易领域,AIGC可以快速将商品说明翻译成多种语言,降低沟通成本和误解风险。...
【详情】AIGC的中心技术有哪些?(1)变分自编码(VariationalAutoencoder...
【详情】实现方法人工智能在计算机上实现时有2种不同的方式。一种是采用传统的编程技术,使系统呈现智...
【详情】那么,下一次员工所做的PPT很大概率还是不符合要求,因为,没有反馈思考,没有HFRL,自...
【详情】计算智能80年代中DAVIDRUMELHART等再次提出神经网络和联结主义.这和其他的子...
【详情】AIGC赋能服饰电商,助力降本增效AIGC可以为商家提供大量创意素材,电商广告正是对创意营销...
【详情】人工智能学科研究的主要内容包括:知识表示、自动推理和搜索方法、机器学习和知识获取、知识处...
【详情】