AIGC推动创意落地,突破表达瓶颈虽然AI能帮助人类更好的释放创意,但从剧本到荧幕仍是一段漫长的距离。从创意到表达的跨越,AI可以保驾护航,帮助人类化不可能为可能。举例来说,当前劳动密集型的影视生产方式难以满足观众对质量日益提高的要求。2009年上映的《阿凡达》令全球观众旗舰了解3D电影的魅力,此后沉浸式观影体验成了影视产业链上共同的追求。为了满足这种追求,影视特技与应用呈现井喷式发展,但后期制作与渲染,复杂程度也都水涨船高,传统的作业方式已经难以为继,而AI技术就有推动变革的潜力。从技术角度来说,影视特技行业的作业流程是极为繁琐的,比如场景中的建模就需要从一草一木、一人一物开始,逐渐打造世界的雏形,再通过骨骼绑定和动作设计让模型活起来,之后的定分镜、调灯光、铺轨道、取镜头等等无不费时费力,后期的解算和渲染等工作同样如此。可以说在影视工作的每个环节都有大量重复性工作或等待时间,无形中拖慢了工作节奏。因此现在就有企业致力于解封流程生产力,比如优酷的“妙叹”工具箱,在动漫中实时渲染,帮助工作者实时把握效果或做出修改,节省了大量成本,减轻人员负担,目前已被多家国漫企业采用。 熟悉的反馈控制的例子是自动调温器.它将收集到的房间温度与希望的温度比较,并做出反应将加热器开大。三明网络AIGC好处
本词条由“科普中国”科学百科词条编写与应用工作项目审核。人工智能(ArtificialIntelligence),英文缩写为AI。[24]它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。人工智能是新一轮科技革新和产业变革的重要驱动力量。[26]人工智能是智能学科重要的组成部分,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和行家系统等。人工智能从诞生以来,理论和技术日益成熟,应用领域也不断扩大,可以设想,未来人工智能带来的科技产品,将会是人类智慧的“容器”。人工智能可以对人的意识、思维的信息过程的模拟。人工智能不是人的智能,但能像人那样思考、也可能超过人的智能。人工智能是一门极富挑战性的科学,从事这项工作的人必须懂得计算机知识,心理学和哲学等。人工智能是包括十分普遍的科学,它由不同的领域组成,如机器学习,计算机视觉等等。总的说来,人工智能研究的一个主要目标是使机器能够胜任一些通常需要人类智能才能完成的复杂工作。但不同的时代、不同的人对这种“复杂工作”的理解是不同的。 南平谷歌AIGC案例到1985年美国有一百多个公司生产机器视觉系统,销售额共达8千万美元.
英文全称是”AI Generated Content’',指的是利用人工智能来生产内容,其中AI是人工智能的简称,GC则是创作内容。AIGC可以包括各种形式的内容,如文章,新闻,音乐,绘画视频等。它的应用范围非常普遍,目前AIGC主要运用在文字,图像,视频,音频,游戏以及虚拟人等方面。
内容创作(GC)的生态产业有四个发展阶段:
行家生成内容(Professionally-Generated Content。PGC)
用户生成内容(User-Generated Generated Content)
AI辅助生产内容(AI-Generated Content,AIGC)
2022年被称为 AIGC元年。2021年之前,AIGC生成主要还是文字,而新一代的模型可以处理的模态大为丰富且支持跨模态产,可以支持AI插画,文字生成配套视频等常见应用场景。
智能模拟机器视、听、触、感觉及思维方式的模拟:指纹识别,人脸识别,视网膜识别,虹膜识别,掌纹识别,行家系统,智能搜索,定理证明,逻辑推理,博弈,信息感应与辨证处理。学科范畴人工智能是一门边沿学科,属于自然科学、社会科学、技术科学三向交叉学科。涉及学科哲学和认知科学,数学,神经生理学,心理学,计算机科学,信息论,控制论,不定性论,仿生学,社会结构学与科学发展观。研究范畴语言的学习与处理,知识表现,智能搜索,推理,规划,机器学习,知识获取,组合调度问题,感知问题,模式识别,逻辑程序设计,软计算,不精确和不确定的管理,人工生命,神经网络,复杂系统,遗传算法人类思维方式,关键的难题还是机器的自主创造性思维能力的塑造与提升。安全问题人工智能还在研究中,但有学者认为让计算机拥有智商是很危险的,它可能会反抗人类。这种隐患也在多部电影中发生过,其主要的关键是允不允许机器拥有自主意识的产生与延续,如果使机器拥有自主意识,则意味着机器具有与人同等或类似的创造性,自我保护意识,情感和自发行为。因此,人工智能的安全可控问题要同步从技术层面来解决。随着技术的发展成熟,监管形式可能逐步发生变化。 1955年末,NEWELL和SIMON做了一个名为"逻辑行家"(LOGIC THEORIST)的程序.
采用后一种方法时,编程者要为每一角色设计一个智能系统(一个模块)来进行控制,这个智能系统(模块)开始什么也不懂,就像初生婴儿那样,但它能够学习,能渐渐地适应环境,应付各种复杂情况。这种系统开始也常犯错误,但它能吸取教训,下一次运行时就可能改正,至少不会永远错下去,用不到发布新版本或打补丁。利用这种方法来实现人工智能,要求编程者具有生物学的思考方法,入门难度大一点。但一旦入了门,就可得到广泛应用。由于这种方法编程时无须对角色的活动规律做详细规定,应用于复杂问题,通常会比前一种方法更省力。与人类差距2023年,中国科学院自动化研究所(中科院自动化所)团队崭新完成的一项研究发现,基于人工智能的神经网络和深度学习模型对幻觉轮廓“视而不见”,人类与人工智能的“角逐”在幻觉认知上“扳回一局”。 尽管还很简陋,这些系统已能够通过黑白区别分辨出物件形状的不同.宁德人工智能 AIGC优缺点
MINSKY和MARR的成果如今用到了生产线上的相机和计算机中,进行质量控制.三明网络AIGC好处
ChatGPTChatGPT是美国OpenAI公司在2022年11月发布的智能对话模型。截止目前ChatGPT未公开论文等技术资料。大多数的技术原理分析是基于InstructGPT分析。ChatGPT与GPT-3等对话模型不同的是,ChatGPT引入了人类反馈强化学习(HFRL:HumanFeedbackReinforcementLearning)。ChatGPT与强化学习:强化学习策略在AlphaGo中已经展现出其强大学习能力。简单的说,ChatGPT通过HFRL来学习什么是好的回答,而不是通过有监督的问题-答案式的训练直接给出结果。通过HFRL,ChatGPT能够模仿人类的思维方式,回答的问题更符合人类对话。ChatGPT原理:举个简单的例子进行说明,公司员工收到领导安排任务,需完成一项工作汇报的PPT。当员工完成工作PPT制作时,去找领导汇报,领导在看后认为不合格,但是没有清楚的指出问题在哪。员工在收到反馈后,不断思考,从领导的思维方式出发,重新修改PPT,提交领导查看。通过以上多轮反馈-修改后,员工在PPT制作上会更符合领导思维方式。而如果领导在旗舰次查看时,直接告诉员工哪里有问题,该怎样修改。 三明网络AIGC好处
认知模拟经济学家赫伯特·西蒙和艾伦·纽厄尔研究人类问题解决能力和尝试将其形式化,同时他们...
【详情】采用后一种方法时,编程者要为每一角色设计一个智能系统(一个模块)来进行控制,这个智能系统...
【详情】例如,在国际贸易领域,AIGC可以快速将商品说明翻译成多种语言,降低沟通成本和误解风险。...
【详情】AIGC的中心技术有哪些?(1)变分自编码(VariationalAutoencoder...
【详情】实现方法人工智能在计算机上实现时有2种不同的方式。一种是采用传统的编程技术,使系统呈现智...
【详情】那么,下一次员工所做的PPT很大概率还是不符合要求,因为,没有反馈思考,没有HFRL,自...
【详情】计算智能80年代中DAVIDRUMELHART等再次提出神经网络和联结主义.这和其他的子...
【详情】AIGC赋能服饰电商,助力降本增效AIGC可以为商家提供大量创意素材,电商广告正是对创意营销...
【详情】人工智能学科研究的主要内容包括:知识表示、自动推理和搜索方法、机器学习和知识获取、知识处...
【详情】