应用:在扩散模型(diffusionmodel)的基础上产生了多种令人印象深刻的应用,比如:图像超分、图像上色、文本生成图片、全景图像生成等。如下图,中间图像作为输入,基于扩散模型,生成左右视角两张图,输入图像与生成图像共同拼接程一张全景图像。生成全景图像产品与模型:在扩散模型的基础上,各公司与研究机构开发出的代替产品如下:DALL-E2(OpenAI文本生成图像,图像生成图像)DALL-E2由美国OpenAI公司在2022年4月发布,并在2022年9月28日,在OpenAI网站向公众开放,提供数量有限的无偿图像和额外的购买图像服务。Imagen(GoogleResearch文本生成图像)Imagen是2022年5月谷歌发布的文本到图像的扩散模型,该模型目前不对外开放。用户可通过输入描述性文本,生成图文匹配的图像。StableDiffusion(StabilityAI文本生成图像,代码与模型开源)2022年8月,StabilityAI发布了StableDiffusion,这是一种类似于DALL-E2与Imagen的开源Diffusion模型,代码与模型权重均向公众开放。(4)Transformer2017年由谷歌提出,采用注意力机制(attention)对输入数据重要性的不同而分配不同权重,其并行化处理的优势能够使其在更大的数据集训练,加速了GPT等预训练大模型的发展。 人类的语言,人类的智能是如此的复杂,以至于我们的研究还并未触及其导向本质的外延部分的边沿。福建公司AIGC前景
计算智能80年代中DAVIDRUMELHART等再次提出神经网络和联结主义.这和其他的子符号方法,如模糊控制和进化计算,都属于计算智能学科研究范畴。统计学法90年代,人工智能研究发展出复杂的数学工具来解决特定的分支问题。这些工具是真正的科学方法,即这些方法的结果是可测量的和可验证的,同时也是人工智能成功的原因。共用的数学语言也允许已有学科的合作(如数学,经济或运筹学)。“革新”和“NEATS的成功”。有人批评这些技术太专注于特定的问题,而没有考虑长远的强人工智能目标。集成方法智能AGENT范式智能AGENT是一个会感知环境并作出行动以达致目标的系统。 厦门AIGC用处从图灵影响深远的奠基性研究到机器人和新人工智能的飞跃。
英文全称是”AI Generated Content’',指的是利用人工智能来生产内容,其中AI是人工智能的简称,GC则是创作内容。AIGC可以包括各种形式的内容,如文章,新闻,音乐,绘画视频等。它的应用范围非常普遍,目前AIGC主要运用在文字,图像,视频,音频,游戏以及虚拟人等方面。
内容创作(GC)的生态产业有四个发展阶段:
行家生成内容(Professionally-Generated Content。PGC)
用户生成内容(User-Generated Generated Content)
AI辅助生产内容(AI-Generated Content,AIGC)
2022年被称为 AIGC元年。2021年之前,AIGC生成主要还是文字,而新一代的模型可以处理的模态大为丰富且支持跨模态产,可以支持AI插画,文字生成配套视频等常见应用场景。
短视频策划:AIGC可以利用计算机数据算法和图像处理技术,自动生成短视频拍摄的脚本,生成对应的参考样片,也可以从大量的素材中选取的片段,并进行自动剪辑和编辑,以快速生成吸引人的短视频内容。广告创意:AIGC可以利用计算机视觉和图像识别算法,分析大量的图像和视频数据,从中提取特征并生成创意性的广告内容。它可以根据目标受众的喜好和需求,自动生成个性化的广告,并优化广告投放效果。游戏设计:AIGC可以在游戏设计过程中发挥重要作用。它可以帮助游戏开发人员创建智能的虚拟角色和敌对AI,增强游戏的可玩性和挑战性。同时,AIGC还可以分析玩家行为和反馈数据,提供个性化的游戏体验,优化游戏关卡设计和平衡性。教育内容:AIGC可以为教育领域带来许多创新。它可以根据学生的学习情况和兴趣,生成个性化的教学内容和练习题,提供定制化的学习路径和反馈。 尽管还很简陋,这些系统已能够通过黑白区别分辨出物件形状的不同.
VisionTransformer(ViT)2020年由谷歌团队提出,将Transformer应用至图像分类任务,此后Transformer开始在CV领域大放异彩。ViT将图片分为14*14的patch,并对每个patch进行线性变换得到固定长度的向量送入Transformer,后续与标准的Transformer处理方式相同。以ViT为基础衍生出了多重精良模型,如SwinTransformer,ViTAETransformer等。ViT通过将人类先验经验知识引入网络结构设计,获得了更快的收敛速度、更低的计算代价、更多的特征尺度、更强的泛化能力,能够更好地学习和编码数据中蕴含的知识,正在成为视觉领域的基础网络架构。以ViT为代替的视觉大模型赋予了AI感知、理解视觉数据的能力,助力AIGC发展。2、预训练大模型虽然过去各种模型层出不穷,但是生成的内容偏简单且质量不高,远不能够满足现实场景中灵活多变以高质量内容生成的要求。预训练大模型的出现使AIGC发生质变,诸多问题得以解决。大模型在CV/NLP/多模态领域成果颇丰,并如下表的经典模型。 总之,80年代AI被引入了市场,并显示出实用价值.可以确信,它将是通向21世纪之匙。莆田大厂AIGC
NORBERT WIENER是期初研究反馈理论的美国人之一。福建公司AIGC前景
那么,下一次员工所做的PPT很大概率还是不符合要求,因为,没有反馈思考,没有HFRL,自然不会做出符合要求的工作。ChatGPT亦是如此。ChatGPT能够回答出好的问题与它的“领导”所秉持的价值观有很大关系。因此,你的“点踩”可能会影响ChatGPT的回答。ChatGPT的斐然特点如下:(3)多模态预训练大模型CLIP(OpenAI)2021年美国OpenAI公司发布了跨模态预训练大模型CLIP,该模型采用从互联网收集的4亿对图文对。采用双塔模型与比对学习训练方式进行训练。CLIP的英文全称是ContrastiveLanguage-ImagePre-training,即一种基于对比文本-图像对的预训练方法或者模型。简单说,CLIP将图片与图片描述一起训练,达到的目的:给定一句文本,匹配到与文本内容相符的图片;给定一张图片,匹配到与图片相符的文本。 福建公司AIGC前景
认知模拟经济学家赫伯特·西蒙和艾伦·纽厄尔研究人类问题解决能力和尝试将其形式化,同时他们...
【详情】采用后一种方法时,编程者要为每一角色设计一个智能系统(一个模块)来进行控制,这个智能系统...
【详情】例如,在国际贸易领域,AIGC可以快速将商品说明翻译成多种语言,降低沟通成本和误解风险。...
【详情】AIGC的中心技术有哪些?(1)变分自编码(VariationalAutoencoder...
【详情】实现方法人工智能在计算机上实现时有2种不同的方式。一种是采用传统的编程技术,使系统呈现智...
【详情】那么,下一次员工所做的PPT很大概率还是不符合要求,因为,没有反馈思考,没有HFRL,自...
【详情】计算智能80年代中DAVIDRUMELHART等再次提出神经网络和联结主义.这和其他的子...
【详情】AIGC赋能服饰电商,助力降本增效AIGC可以为商家提供大量创意素材,电商广告正是对创意营销...
【详情】人工智能学科研究的主要内容包括:知识表示、自动推理和搜索方法、机器学习和知识获取、知识处...
【详情】