天然气制氢主要有热裂解法、催化裂解法和重整法等。热裂解法热裂解法是将天然气在高温下分解为氢气和碳。具有局限性。催化裂解法催化裂解法是在催化剂的作用下将天然气在低温下分解为氢气和碳。由于反应温度较低,能量损失小。催化剂通常是钜、铂、铭等贵金属催化剂。重整法是利用天然气进行催化重整反应,其原理是将天然气与水蒸气加热至高温,经过反应后得到大量的氢气和一定量的CO2。重整反应通常采用镍为催化剂。天然气制氢工艺的改进通过对转化炉、热量回收系统等进行改造可以实现成本节约、降低对天然气原料的消耗,这种技术通过对原料的消耗,这种技术通过对天然气加氢脱硫和在转化炉中放置适量的特殊催化剂进行裂解重整,生成二氧化碳、氢气和一氧化碳的转化气,之后再进行热量回收,经一氧化碳变换降低转化气中一氧化碳的含量、再通过PSA变压吸附提纯就可以得到纯净的氢气。天然气制氢装置中氢气提纯工艺主要是在适当条件下,将活性炭、氧化铝等组成吸附床,并用吸附床将变换气中各杂质组分在适当的压力条件下进行吸附,不易被吸附的氢气就从吸附塔的出口输出,从而实现氢气的提纯。 天然气制氢的副产品有从氯碱工业副产气、煤化工焦炉煤气、合成氨产生的尾气。海南天然气天然气制氢设备
除了作为化工原料(如石油炼化、合成氨、合成甲醇)和工业工艺气体(如钢铁、半导体行业还原剂)等传统使用方式外,绿氢还可以作为能源、燃料来使用。氢燃料电池是目前被看好的氢能利用路线。氢燃料电池汽车具备零排放、零污染、无噪声、补充燃料快、续航能力强等优势。2022年北京冬奥会期间,超过1000辆氢能源汽车使用,并配备了30多个加氢站,这是迄今为止氢燃料电池汽车在全球规模的集中示范运营。在新技术加持下,氢能交通工具可以实现风、光、水到氢再到水的“无碳物质闭环”,构成绿色发展的一次次清洁能量循环。比如氢能源市域列车,以每天500公里里程计,每年大约可减少10余吨二氧化碳排放。未来,氢能大巴、氢能重卡、氢动力船舶、氢动力无人机等都可能出现,氢能交通工具也有望与其他新能源交通工具一道,构筑城乡发展的运力网络。资质天然气制氢设备在哪里绝热条件下,天然气制氢,这种天然气制氢方式更适用于小规模的制取氢。
电解槽:电解槽是制氢站的设备,通过电解水制取氢气和氧气。如果电解槽的密封不良或设备损坏,可能会导致氢气泄漏。气体冷却器:在纯化后的氢气需要经过冷却器降温。如果冷却器发生泄漏,可能会造成氢气排放。为防止这种情况,应强化冷却器的设计和操作,并定期进行维护和检查。压缩机:压缩机也是制氢站中容易出现氢气泄漏的设备。设备的振动或操作不当都可能导致泄漏。储罐区:储罐区也是氢气泄漏的易发区域。如果储罐存在缺陷或维护不当,如储罐密封垫片老化、破裂,或者储罐内部腐蚀、磨损等,都可能导致氢气泄漏。充装口/卸料口:这些部件的密封性能不佳或老化可能会导致氢气泄漏。例如,阀门密封垫片老化、破裂,或者阀门操作不当都可能引起氢气泄漏。
焦炉煤气副产氢焦炉煤气是焦炭生产过程中的副产品,通常生产1t焦炭可副产380-420m3的焦炉气,焦炉煤气的组成见下表,氢气体积分数约为54-59%。变压吸附(PSA)氢气回收率为75-90%。根据2019年***焦炭产量,2019年焦炉煤气副产的氢气产量约为880万吨,占氢气总产量的38%。焦炉煤气副产的氢气约55%将继续被焦化厂或钢厂自用,45%对外销售。焦炉煤气制氢技术成本较低,如果考虑焦炉煤气外购成本,焦炉煤气制氢工艺成本为。如果不考虑焦炉煤气外购成本,则氢气产品的平均成本为。原材料焦炉煤气的成本占总成本的80%,焦炉煤气价格越氢成本优势越明显。如果从煤焦化过程开始分析制氢成本,苯、煤焦油、焦炭和氢四种产品进行成本分摊,氢气产品在总产出中的价值占比为,制氢成本为。焦炉煤气制氢既能实现的资源回收利用,又能弥补能源供应缺口,有助于形成良好的循环经济产业链。 根据天然气参加反应的不同,可以分为传统水蒸气重整制氢,部分氧化反应制氢,自热重整制氢三种制氢工艺。
然气制氢优势 - 资源丰富:从资源角度看,天然气制氢优势。全球天然气储量丰富,分布广。据统计,已探明的天然气储量足够支撑未来较长时间的能源需求。相比其他一些制氢原料,如煤炭制氢受限于煤炭资源的地域分布及环保压力,天然气在资源获取上更为便捷。在中东、俄罗斯等地区,天然气储量巨大且开采成本相对较低。而且,随着勘探技术的不断进步,新的天然气田持续被发现。丰富的资源保障了天然气制氢的可持续性,为大规模发展氢气产业提供了坚实基础,使得以天然气为原料制氢能够在全球范围内开展,满足不同地区对氢气的需求。天然气制氢设备的生产过程中,需要注意对催化剂的选择和使用。山西国内天然气制氢设备
氢能适用于作为燃料、原料及储能手段。海南天然气天然气制氢设备
天然气高温裂解制氢是天然气经高温催化分解为氢和碳该过程。由于不产生二氧化碳被认为是连接化石燃料和可再生能源之间的过渡工艺过程。天然气自热重整制氢。该工艺同重整工艺相比,变外供热为自供热,反应热量利用较为合理,原理是在反应器中耦合了放热的天然气反应和强吸热的天然气水蒸汽重整反应反应体系本身可实现自供热。另外,由于自热重整反应器中强放热反应和强吸热反应分步进行,因此反应器仍需耐高温的不修锈钢管做反应器这就使得天然气自热重整反应过程具有装置成本高,生产能力低等缺点。天然气制氢的副产品有从氯碱工业副产气、煤化工焦炉煤气、合成氨产生的尾气。绝热条件下,天然气制氢,这种天然气制氢方式更适用于小规模的制取氢。天然气绝热转化制氢将空气作为氧气来源,同时利用含氧分布器可以解决催化剂床层热点问题和能量的分配,随着床层热点的降低,催化材料的反应稳定性也得到较大的提高。天然气绝热转化制氢工艺流程简单、操作方便。 海南天然气天然气制氢设备
气力输送设备操作流程设备开启前先检查设备是否加注齿轮油,设备各部件是否完好,罗茨风机及旋转供料器的正反转,输送管道是否通畅。开启方式:先将罗茨风机开启,观察风机出口压力表压力,管道在畅通状态下压力几乎为零;然后开启台旋转供料器,把上面的手动插板阀慢慢打开,随着插板阀的打开物料会落入旋转供料器然后进入输送管道,压力表会有波动。根据物料的流动性和压力表的显示,可调整手动阀门的开度控制下料量。随时观察压力表的变化。有两台供料器的输送线路在台旋转供料器物料输送完毕后,关闭台旋转供料器,1-2分钟后,管道中物料输送完毕,再开启第二台旋转供料器,依次运行。停止方式:先将手动插板阀关闭(如果设备短时间停止的...