光伏电镀铜的技术采用金属铜完全代替银浆作为栅线电极,实现整片电池的工艺转换,打破瓶颈,创新行业发展。光伏电镀铜设计的导电方式主要有弹片式导电舟方式、水平滚轮导电、模具挂架式、弹片重力夹具等方式。合理的导电方式对光伏电镀铜设备非常重要是实现可量产的关键因素之一。优良的导电方式可以实现设备的便捷维修和改善电镀铜片与片之间的电镀铜厚极差,甚至可以实现单片硅上分布电流的可监控性。太阳能电池电镀铜技术。这项技术不仅可提升太阳能电池板效能,而且可大规模降低成本。以开掘市场潜力,全新的电镀工艺旨在进一步针对低成本电池的需求。电镀铜取代银浆就是把格栅的线路做的更细。南京光伏电镀铜路线

电镀铜图形化环节主要包含掩膜、曝光、显影几个步骤。其中,掩膜环节是将抗刻蚀的感光材料涂覆在电池表面以遮盖保护不需要被电镀的区域,感光材料主要有湿膜油墨、干膜材料等。曝光、显影环节是将图形转移至感光材料上,主要技术有LDI激光直写光刻(无需掩膜)、常规掩膜光刻技术、激光开槽、喷墨打印等;其中无需掩膜的LDI激光直写光刻技术应用潜力较大,激光开槽在BC类电池上已有量产应用,整体看图形化技术路线有望逐步明确和定型。苏州釜川电镀铜设备电镀铜可以提供定制化的解决方案,根据客户需求进行颜色、光泽和厚度的调整。
电镀铜优势在于可助力电池提效0.3-0.5%+,进而提高组件功率。相较于银包铜+0BB/NBB工艺,我们预计银包铜+0BB/NBB工艺或是短期内HJT电池量产化的主要降本路径,随着未来银含量30%银包铜浆料的导入,浆料成本有望降至约3分/W,HJT电池金属化成本或降至5分/W左右。电镀铜工艺有望于2023-2024年加快中试,并于2024年逐步导入量产。随着工艺经济性持续优化,电镀铜HJT电池的金属化成本有望降至5-6分/W左右,叠加考虑0BB/NBB对应组件封装/检测成本提升,而电镀铜可提升效率约0.5%+,电镀铜优势逐渐强化,有望成为光伏电池无银化的解决方案。
电镀铜光伏电池渗透率:根据CPIA数据,至2030年光伏电池片正面金属电池技术市场仍以银电极为主导,约占87.5%,非银电极技术包括银包铜等,约为12.5%,该比例口径为所有类型的电池片,而N型电池片在运用银包铜、激光转印等降本路线上较为积极,我们假设在N型电池中,2030年银电极占比下调为65%。目前银包铜技术相较电镀铜更为成熟,但未来一旦铜电镀技术成熟后,大幅降本增效的铜电镀产业化进程会更加快速,因此假设2022-2030年铜电镀工艺在非银电极中占比为自15%提升至70%,对应2022-2030年铜电镀光伏电池渗透率自0.45%提升至24.5%。电镀铜是一种高效、环保的金属表面处理技术。
电镀铜图形化环节主要包含掩膜、曝光、显影几个步骤。其中,掩膜环节是将抗刻蚀的感光材料涂覆在电池表面以遮盖保护不需要被电镀的区域,感光材料主要有湿膜油墨、干膜材料等。曝光、显影环节是将图形转移至感光材料上,主要技术有LDI激光直写光刻(无需掩膜)、常规掩膜光刻技术、激光开槽、喷墨打印等;其中无需掩膜的LDI激光直写光刻技术应用潜力较大,激光开槽在BC类电池上已有量产应用,整体看图形化技术路线有望逐步明确和定型。电镀铜设备电镀环节主要包括水平镀、垂直镀、光诱导电镀等。安徽高效电镀铜丝网印刷
PVD镀膜设备的技术经验可延伸至HJT电镀铜工艺。南京光伏电镀铜路线
光伏电镀铜优势之增效:(1)铜电镀电极导电性能优于银栅线,且与TCO层的接触特性更好,促进提高电池转换效率。A.金属电阻率影响着电极功率损耗与导电性能,纯铜具有更低电阻率。异质结低温银浆主要由银粉、有机树脂等材料构成,浆料固化后部分有机物不导电,使低温银浆的电阻率较高、电极功率损耗较大;同时,由于低温银浆烧结温度不超过250℃,浆料中Ag颗粒间粘结不紧密,具有较多的空隙,导致其线电阻的提高及串联电阻的增加。而铜电镀栅线使用纯铜,其电阻率接近纯银但明显低于低温银浆,且其电极结构致密均匀,没有明显空隙,可实现更低的线电阻率,降低电池电极欧姆损耗、提高电性能。B.金属与TCO层的接触特性影响着异质结太阳电池载流子收集、附着特性及电性能,铜电镀电极更具优势。银浆料与TCO透明导电薄膜之间的接触存在孔洞较多,造成其金属-半导体接触电阻的增加和电极附着性降低,影响了载流子的传输。而铜电镀电极易与透明导电薄膜紧密附着,无明显孔洞,使接触电阻较小,可以提高载流子收集几率。南京光伏电镀铜路线