(1)将GO作为荧光共振能量转移的受体,构建荧光共振能量转移型氧化石墨烯生物传感器,用于检测各种生物分子。(2)可以将一些抗体键合在GO表面,构建成抗体型氧化石墨烯传感器,通常是将GO作为荧光共振能量转移或化学发光共振能量转移的受体,以此来检测抗原物质;或者利用GO比表面积较大能结合更多抗体的特点,将检测信号进行进一步放大。(3)构建多肽型氧化石墨烯传感器。因为GO是一种边缘含有亲水基团(-COOH,-OH及其他含氧基团)而基底具有高疏水性的两性物质,当多肽与GO孵育时,多肽的芳环和其他疏水性残基与GO的疏水性基底堆积,同时二者部分残基之间也会存在静电作用,这样多肽组装在GO上形成了多肽型氧化石墨烯传感器。当多肽被荧光基团标记时,二者之间发生荧光共振能量转移后,GO使荧光发生猝灭。氧化石墨可以用于提高环氧树脂、聚乙烯、聚酰胺等聚合物的导热性能。附近氧化石墨生产厂家

使得*在单层中排列的水蒸气可以渗透通过纳米通道。通过在GO纳米片之间夹入适当尺寸的间隔物来调节GO间距,可以制造广谱的GO膜,每个膜能够精确地分离特定尺寸范围内的目标离子和分子。水合作用力使得溶液中氧化石墨烯片层间隙的距离增大到1.3nm,真正有效、可自由通过的孔道尺寸为0.9nm,计算出水合半径小于0.45nm的物质可以通过氧化石墨烯膜片,而水合半径大于0.45nm的物质被截留,如图8.4所示。例如,脱盐要求GO的层间距小于0.7nm,以从水中筛分水合Na+(水合半径为0.36nm)。通过部分还原GO以减小水合官能团的尺寸或通过将堆叠的GO纳米片与小尺寸分子共价键合以克服水合力,可以获得这种小间距。与此相反,如果要扩大GO的层间距至1~2nm,可在GO纳米片之间插入刚性较大的化学基团或聚合物链(例如聚电解质),从而使GO膜成为水净化、废水回收、制药和燃料分离等应用的理想选择。如果使用更大尺寸的纳米颗粒或纳米纤维作为插层物,可以制备出间距超过2nm的GO膜,以用于生物医学应用(例如人工肾和透析),这些应用需要大面积预分离生物分子和小废物分子。无污染氧化石墨复合材料将氧化石墨暴露在强脉冲光线下,例如氙气灯也能得到石墨烯。

比较成熟的非线性材料有半导体可饱和吸收镜和碳纳米管可饱和吸收体。但是制作半导体可饱和吸收镜需要相对复杂和昂贵的超净制造系统,这类器件的典型恢复时间约为几个纳秒,且半导体可饱和吸收镜的光损伤阀值很低,常用的半导体饱和吸收镜吸收带宽较窄。碳纳米管是一种直接带隙材料,带隙大小由碳纳米管直径和属性决定。不同直径碳纳米管的混合可实现宽的非线性吸收带,覆盖常用的1.0~1.6um激光増益发射波段。但是由于碳纳米管的管状形态会产生很大的散射损耗,提高了锁模阀值,限制了激光输出功率和效率,所以,研究人员一直在寻找一种具有高光损伤闽值、超快恢复时间、宽带宽和价格便宜等优点的饱和吸收材料。
氧化应激是指体内氧化与抗氧化作用失衡,倾向于氧化,导致中性粒细胞炎性浸润,蛋白酶分泌增加,产生大量氧化中间产物,即活性氧。大量的实验研究已经确认细胞经不同浓度的GO处理后,都会增加细胞中活性氧的量。而活性氧的量可以通过商业化的无色染料染色后利用流式细胞仪或荧光显微镜检测到。氧化应激是由自由基在体内产生的一种负面作用,并被认为是导致衰老和疾病的一个重要因素。氧化应激反应不仅与GO的浓度[17,18]有关,还与GO的氧化程度[19]有关。如将蠕虫分别置于10μg/ml和20μg/ml的PLL-PEG修饰的GO溶液中,GO会引起蠕虫细胞内活性氧的积累,其活性氧分别增加59.2%和75.3%。石墨原料片径大小、纯度高低等以及合成方法不同,因此导致所合成出来的GO片的大小有差异。

GO膜在水处理中的分离机理尚存在诸多争议。一种观点认为通过尺寸筛分以及带电的目标分离物与纳米孔之间的静电排斥机理实现分离,如图8.3所示。氧化石墨烯膜的分离通道主要由两部分构成:1)氧化石墨烯分离膜中不规则褶皱结构形成的半圆柱孔道;2)氧化石墨烯分离膜片层之间的空隙。除此之外,由氧化石墨烯结构缺陷引起的纳米孔道对于水分子的传输提供了额外的通道19-22。Mi等23研究认为干态下通过真空过滤制备的氧化石墨烯片层间隙的距离约为0.3nm。静电作用的强弱与氧化石墨烯表面官能团产生的负电荷相关。制备氧化石墨生产企业
氧化石墨仍然保留石墨母体的片状结构,但是两层间的间距(约0.7nm)大约是石墨中层间距的两倍。附近氧化石墨生产厂家
尽管氧化石墨烯自身可以发射荧光,但有趣的是它也可以淬灭荧光。这两种看似相互矛盾的性质集于一身,正是由于氧化石墨烯化学成分的多样性、原子和电子层面的复杂结构造成的。众所周知,石墨形态的碳材料可以淬灭处于其表面的染料分子的荧光,同样的,在GO和RGO中存在的SP2区域可以淬灭临近一些物质的的荧光,如染料分子、共轭聚合物、量子点等,而GO的荧光淬灭效率在还原后还有进一步的提升。有很多文章定量分析了GO和RGO的荧光淬灭效率,研究表明,荧光淬灭特性来自于GO、RGO与辐射发生体之间的荧光共振能量转移或者非辐射偶极-偶极耦合。附近氧化石墨生产厂家