低压真空渗碳设备,真空渗碳也是渗碳的一种,只是设备的表现形式不同,当然,工艺也有很大不同。真空渗碳按淬火方式不同,分真空渗碳油淬炉和真空渗碳气淬炉。从外观上说真空渗碳油淬炉和真空油淬炉相似,真空渗碳气淬炉和真空高压气淬炉相似。在增加渗碳功能以后,多了供气系统,气体流量控制系统,渗碳压力控制系统以及对加热系统的更改,这些系统的增加和更改,大部分是在设备内部,所以真空渗碳炉和真空炉的外形没有太大的区别。真空渗碳炉的规格主要有644、755、966、1077、1288,以及更大的1500*1500*800mm等标准型号,对应装炉量150kg,300 kg,500 kg,750 kg,1000 kg,4000 kg。基本上以双室油淬炉为基础上都可以作为真空渗碳炉的生产平台。低压真空渗碳是在低于一个大气压条件下的气体渗碳。渗碳的压力一般在200-2000pa,实际应用较多的是200-500pa。中性淬火过程中,选择合适的冷却介质和工艺参数可以实现理想的淬火效果。苏州零件真空硬化淬火过程
真空淬火对工件硬度的影响,真空淬火作为一种高效的热处理方法,主要是通过快速冷却来影响材料的晶体结构,从而提高硬度和强度。具体来说,这种方法可以使金属工件内部的晶体结构更加致密和均匀,从而达到提高硬度的目的。除此之外,真空淬火还可以减少工件的变形和裂纹等质量问题。在传统淬火过程中,由于冷却速度过快或过慢,工件容易发生变形和裂纹等问题,导致处理效果下降。而真空淬火可以有效规避这些问题,使得工件的质量更加稳定和可靠。金属真空硬化淬火工件中性淬火可以使其获得一致的硬度和优良的机械性能。
采用500-650℃高温回火的合金钢模具,均可在低于回火温度的范围内或在回火的同时进行表面渗氮或氮碳共渗。渗氮工艺,目前多采用离子渗氮、高频渗氮等工艺。离子渗氮可以缩短渗氮时间,并可获得高质量的渗层。离子渗氮可以提高压铸模的抗蚀性、耐磨性、抗热疲劳性和抗粘附性能。氮碳共渗可在气体介质或液体介质中进行,渗层脆性小,共渗时间比渗氮时间大为缩短。压铸模、热挤压模经氮碳共渗后,可明显提高其热疲劳性能。氮碳共渗对冷镦模、冷挤压模、冷冲模、拉伸模等均有很好的应用效果。冷作模具和热作模具还可以进行硫氮或硫氮碳共渗。近年,许多研究工作都表明,稀土有明显的催渗效果,从而发展了稀土氮共渗、稀土氮碳共渗等新工艺。
渗碳后常采的热处理方法:1)高温回火+淬火+低温回火,经高温回火后残余奥氏体分解,渗层中碳和合金元素以碳化物形式析出,易于机械加工同时残余奥氏体减少,主要用于Cr-Ni合金钢零件。2)二次淬火+低温回火,将工件冷至室温后,再进行两次淬火,然后低温回火。这是一种同时保证心部与表面都获得高性能的热处理方法,两次淬火有利于减少表面的残余奥氏体数量。3)二次淬火+冷处理+低温回火,也称为高合金钢减少表层残余奥氏体量的热处理,多用于齿轮和轴类零件。真空淬火是将零件放置于真空炉中抽取真空进行加热,因此氧化和形变均较小,这就是真空淬火较大的优势。
可处理形状复杂的零件,工件变形小:真空渗碳工件加热时,加热的速度连续可控,可减小工件的内外温差,变形小;渗碳完成后,淬火方式为真空淬火,大幅减小工件的淬火变形;减小后期的加工量,节省加工成本。适当减慢升温速度,可有效减小工件变形。真空渗碳炉加热时升温速度可控,可根据工件复杂性调节升温速度。渗碳层深度更均匀:工件加热完成匀温之后,才通入渗碳气体,保证了大小工件起始渗碳点的同步性,这是渗碳层均匀的基础。而常规气体渗碳和多用炉难以保证这一点。真空对工件表面有净化作用,有利于碳原子被工件吸附。中性淬火是一种广泛应用于各种零件的热处理工艺。金属真空硬化淬火
淬火可以大幅提高钢的刚性、硬度、耐磨性、疲劳强度以及韧性等。苏州零件真空硬化淬火过程
同炉淬火刀具的红硬度不同,经正常温度回火后,真空炉淬火刀具硬度均匀性好,偏差1.5HRC大约590~6000。℃回火后硬度偏差加大。用法国爱和公司EM由钴高速钢制成M3.同炉淬火550以下规格的丝锥℃回火三次后,硬度为65.7~66.8HRC(见图1)均匀性好。6000℃×2h回火后,硬度不均匀(见图2)。图1 1210℃淬火,550℃回火三次,图2 1210℃淬火,550℃回火两次 660℃回火1次,从图2可以看出,高温回火后,硬度约为62~63%HRC,20%在65~66HRC,其余70%为63~65HRC。600℃回火后硬度散差增加说明红硬度不同。苏州零件真空硬化淬火过程