知识解答:1问:下一个脉冲开始之前,需要把上一个脉冲的乙炔和氮气抽空吗?答:不需要。2问:不抽怎么控制压力呢?答:有一套系统,通过压力传感器,根据气体流量,控制真空泵的抽速,实现压力平稳。3问:怎么实现碳化物析出型渗碳?答:含有较多的强碳化物形成元素的材料,在真空渗碳时,就是碳化物析出型渗碳。3问:1cr17真空渗碳后性能有什么变化?答:1Cr17真空渗碳后,表面碳含量能达到3-4%,碳与cr形成大量细小弥散分布的碳化物,硬度和耐磨性大度增加。不过,该材料的防腐性下降很多。常用的渗碳气体包括丙烷、甲烷、乙炔、天然气等。热处理低压渗碳加工
渗碳是指使碳原子渗入到钢表面层的过程。也是使低碳钢的工件具有高碳钢的表面层,再经过淬火和低温回火,使工件的表面层具有高硬度和耐磨性,而工件的中心部分仍然保持着低碳钢的韧性和塑性。真空渗碳也叫低压渗碳,是在低于大气压氛围中进行其气体渗透,使碳原子渗入零件表层的化学热处理工艺。它的整个过程与普通的气体渗碳基本相同,由渗碳气体的分解、活性碳原子的吸收、活性碳原子向内扩散三个过程组成,具体的流程包括零件清洗、装料、进炉抽真空(≤2000Pa)、升温及均热(900~1000℃)、渗碳与扩散、热处理等步骤。减速箱低压渗碳加工低压渗碳工艺可以对零件进行局部保护,避免不必要的渗碳。
接下来,我就对乙炔流量及富化率这两个对于渗碳质量影响较大的参数做一个简单的描述。(1)乙炔流量设定值的确定,乙炔流量的设定值是通过经验公式计算得到的,公式为:(2500+250Sn/1000000)/2,其中,S为单个零件表面积,n为装炉零件数量。从公式中不难看出,渗碳零件使用的乙炔流量的设定值与单个零件的表面积及装炉零件的数量密切相关。(2)富化率,富化率(FLUX)是指工件在单位时间、单位面积上吸附碳原子的能力。在使用模拟软件模拟渗碳工艺时,FLUX是输入模拟软件的一个非常重要的模拟参数,它直接影响真空渗碳工艺中强渗及扩散脉冲时间的长短。富化率的数值一般通过设备供应商提供的富化率曲线查得,如图1所示,该图即为我公司的真空渗碳设备供应商ECM公司提供。
为了保证齿面的接触疲劳强度,齿面的碳浓度一般控制在0.65%~0.95%较佳。但是在真空渗碳过程中,过高的碳浓度会导致齿角残余奥氏体太多,影响零件的使用寿命。渗碳流量设定依据为处理零件的表面积,因此为了准确设定和控制渗碳介质的流量,较好采用质量流量计。主减速齿轮采用乙炔渗碳,齿轮表面积86763.982mm²,装炉量为64件/炉,根据经验公式计算乙炔流量2000NL/h。低压真空渗碳的优势很明显,但是缺点,肯定也是有的。1)设备成本相对较高。2)小件的装炉量和多用炉相比,会少一点。真空渗碳装炉时,特别是小件渗碳,层与层之间的间隙要有50mm左右。低压渗碳工艺对于提高零件的表面硬度和耐磨性有着明显的效果。
在一些特定领域.更显示出其性能,如盲孔类零件的针阀体喷油嘴,汽车驱动轴等。这些件用一般的可控气氛渗碳是比较困难的,而用低压真空渗碳却可轻易的加以解决。对大齿轮的渗碳结果也表明,齿顶齿面与齿根相比,低压真空渗碳可使二者之间的渗层差降至很小而可控气氛渗碳的渗层差比较大。而对低压真空渗碳的诸多优越性,欧美许多大汽车厂已开始修改其原有的汽车齿轮渗碳标准,如表面非马氏体及齿面与齿根渗层深度差。由于低压真空渗碳可实现高压气淬,且气淬压力是连续可调的,因此对控制薄壁类零件的变形是有效的.目前的生产表明,对许多零件已可以淘汰掉压床油淬的模式。低压渗碳可使金属表面形成高碳含量的层,提高其表面硬度和耐蚀性。减速箱低压渗碳加工
减速箱低压渗碳可提高齿轮的传动效率和承载能力。热处理低压渗碳加工
低压渗碳原理,低压渗碳的原理主要涉及以下几个步骤:分解:首先,渗碳介质的分解产生活性碳原子。吸附:活性碳原子被钢件表面吸收后,溶入表层奥氏体中,使奥氏体中含碳量增加。扩散:表面含碳量增加后,与心部含碳量出现浓度差,表面的碳遂向内部扩散。控制:通过计算机模拟生成渗碳工艺,即渗碳+扩散的脉冲循环次数,输入到计算机监控系统中,进行低压渗碳的工艺过程控制。低压渗碳通常是在真空状态下进行,通过交替的渗碳(如乙炔)和扩散(如高纯氮气)组成的脉冲式渗碳工艺过程。在渗碳阶段,渗碳气体(如乙炔)在炉内充分裂解后进行强渗,而扩散阶段则通入扩散气体(如高纯氮气)进行。这样脉冲式渗碳-扩散交替进行数次,达到所要求的渗碳层深度为止。热处理低压渗碳加工