磨加工时产生回火及裂纹:产生的原因:渗碳层经磨削加工后表面引起软化的现象,称之为磨加工产生的回火。这是由于磨削时加工进给量太快,砂轮硬度和粒度或转速选择不当,或磨削过程中冷却不充分,都易产生此类缺陷。这是因为磨削时的热量使表面软化的缘故。磨削时产生回火缺陷则零件耐磨性降低。表面产生六角形裂纹。这是因为用硬质砂轮表面受到过份磨削,而发热所致。也与热处理回火不足,残余内应力过大有关。用酸浸蚀后,凡是有缺陷部位呈黑色,可与没有缺陷处区别开来。这是磨削时产生热量回火。使马使体转变为屈氏体组织的缘故。其实,裂纹在磨削后肉眼即可看见。2、防止的方法:①淬火后必须经过充分回火或多次回火,消除内应力。②采用40~60粒度的软质或中质氧化铝砂轮,磨削进给量不过大。③磨削时先开冷却液,并注意磨削过程中的充分冷却。为防止过程中产生炭黑,要求气体纯度(体积分数)大于96%,并可适当充入氮气进行稀释扩散。苏州乙烯低压渗碳加工厂家
低压真空渗碳热处理工艺应用领域:1.机械零部件:低压真空渗碳热处理适用于各种机械零部件,如齿轮、轴、轴承、减速器等,可以有效地提高它们的使用寿命和性能。2.汽车零部件:低压真空渗碳热处理可以普遍应用于汽车制造业,如发动机缸体、曲轴、齿轮、离合器等零部件,可以提高它们的强度和耐久性。3.航空航天零部件:低压真空渗碳热处理可以应用于航空航天行业,如发动机零部件、舵面、螺旋桨等,可以提高其耐高温、耐腐蚀、耐磨损等性能。浙江铜低压渗碳工艺一般渗碳层深度范围为0.8~1.2毫米,深度渗碳时可达2毫米或更深。
渗碳后的几种热处理方法,渗碳只能改变零件表面的化学成分,要使零件获得外硬内韧的性能,渗碳热处理后还必须进行淬火加低温回火,来改善钢的强韧性和稳定零件的尺寸。渗碳后常采用以下几种热处理方法。1)二次淬火+低温回火,将工件冷至室温后,再进行两次淬火,然后低温回火。这是一种同时保证心部与表面都获得高性能的热处理方法,两次淬火有利于减少表面的残余奥氏体数量。2)二次淬火+冷处理+低温回火,也称为高合金钢减少表层残余奥氏体量的热处理,多用于齿轮和轴类零件。
按含碳介质的不同,渗碳可分为气体渗碳、固体渗碳、液体渗碳、和碳氮共渗。气体渗碳是将工件装入密闭的渗碳炉内,通入气体渗剂(甲烷、乙烷等)或液体渗剂(煤油或苯、酒精等),在高温下分解出活性碳原子,渗入工件表面,以获得高碳表面层的一种渗碳操作工艺。固体渗碳是将工件和固体渗碳剂(木炭加促进剂组成)一起装在密闭的渗碳箱中,将箱放入加热炉中加热到渗碳温度,并保温一定时间,使活性碳原子渗人工件表面的一种较早的渗碳方法。真空渗碳一般采用脉冲式,即“强渗→扩散→强渗→扩散…”的循环模式。
改进热用料架,从图5中可看出新料架取消了挡边,且零件上下层是交错摆放的,极大地改善了渗碳气体的流通性,使渗碳气体能够与料架上的零件接触更充分,对改善渗碳均匀性有很大帮助。改进效果跟踪,在使用改进措施前,对一炉装炉量为400件的产品进行全数强喷分选操作,分选后发现其中40件存在表面软点现象,废品率达到10%,经金相分析,排除了淬火引起表面软点的可能性,确认为渗碳过程造成的表面软点,因此可认为渗碳失效率达到10%,影响了零件渗碳的均匀性。在使用改进措施后,同样装炉量的同一种零件,淬火参数与淬火过程都与之前相同,经强喷分选后整炉零件均未发现表面软点,产品报废率为0,即渗碳失效率为0,渗碳均匀性得到有效改善,企业生产成本得到有效控制。真空渗碳中22~29%的热量用于加热部件,远高于普通渗碳的6~10%,热效率高等等。苏州乙烯低压渗碳加工厂家
如可控气氛渗碳无法解决表面内氧化、高温渗碳层及深层渗碳的问题,气体渗碳也难以对零件进行渗碳等。苏州乙烯低压渗碳加工厂家
传统的气体渗碳由于齿轮壁厚相差悬殊必然造成渗碳深度不均匀,特别是齿顶和齿底部位的渗碳深度不均匀,给齿轮的疲劳强度带来极坏的影响。这里面有达到渗碳温度的加热问题,在气体渗碳时处理零件被装入已升温的炉内,根据质量效应,由于处理零件壁厚不同部位处的升温时间不同,从而在未匀热时就开始渗碳,所以壁厚差就导致渗碳深度的差异。对此,在真空渗碳处理时,零件装炉后,开始加热,根据处理零件的形状调整升温速度,并且与壁厚无关,待匀热后再进行短时渗碳从而可获得完全均匀一致的渗碳层。苏州乙烯低压渗碳加工厂家